SUPPORT TICKET SYSTEM

write-u P by shay Patel

Source code available @ github.com/0xShay/SupportMe

Page |1

TABLE OF CONTENTS

F Y T2 Y A2 T3PS 3
LAY 12 o TSP PSPPI OPPRPPP 3
EXISTING ISSUBS . s e e e s e s e e e e e s e aen e s e e nes 3
R T 0T Yo LV o] o T SRR 3
(0] oI =Tot {1V =TSPTSRO PP T 4

S To BT o 1 11 USROS 4
STFUCTUIE ittt e e s e bbbttt e s s s e et e e e e s e s sbaeeeeeseannnraeeeesssannnne 5

D= = o TSR 6
WBD SEIVET ...ttt et s e st e s s ab e e s bt e e s bt e e s bbeesbaeesbeeesneeas 6
SQL LAYOUL ettt et e e et et et e e e e et e e e e e e e e e e e e eaeees 6

LU L= a1 o L= PP 7
S o] = i = o 1 8
Y (T 1= LI - | o LTRSS 8
=0T oo 1 o 3SR 9
YT RV Y [LI = g Lo [o Yo 1) &SRR 9
Client-Side @NAPOINTS ...cciiiiiii i et e e e ebre e e e e e e s sbae e e sbeee e e sabeeessneeeeenses 10
Dealing with malformed requests to Flask endpoints........cccceeveeciiiieei e, 11
Connecting to and interacting with the SQLite Databasecccccccevvevvreeeeeieeiieiciireeeeeen, 11
Handling user authenticationoccuiiiiiiiiiee e saee e e 12
Serving dynamic content on the hoMEePageevveevii it 13
Promoting customer accounts to assistant accounts and vice-versa........cceeveeeereeeeeiennnnns 13

JL=Te gL a1 To | = U1 L PRI 15
Database iNItializatioN..........oeiiiiiii e s 15
L670] 0151 =1) &3PS UPT PP 16
Dealing with malformed requests to Flask endpoints.........ccccueeviviiiiiiiniieeecniiiee e 17
Connecting to and interacting with the SQLite Databaseccccceeevecciiiiieeeee e, 17
Handling user authentiCationeeiiiiiieiciiiiiiiee e e e e e e e e eanns 19
Serving dynamic content on the hOMEPAgEecccovviiiiiiriiiie e 23
Promoting customer accounts to assistant accounts and vice-versa........ccccevveeeerniiveeennne 24

I 1 SRt 25
Testing server-side endpoints (Dack-Nd)cccvieeiiieeiiiicce e 25

Source code available @ github.com/0xShay/SupportMe

Testing client-side endpoints (froNt-eNd)cccueiiiiiiiiiiiciee e 34
oY aT =Yg T N =T ol o] - o PSSP 34
FPONT-EN0 LSES ..ttt sttt st st sae e s ae e st s et st e et e et e eneeennenas 35

EVAIUGTION ettt nee s 37

SUCCESS CrITEIIA cuuvviiiiiiiiee i aa e s s sbae e s 37
Yo BT a1 411 USSR 37
SEPUCTUIE ittt b e s ab s e e sb b e e s sbb s e e s naes 39

Potential IMProVEMENTSccooeeeee et e e e e e e e e e e e e e e e s enarraeeeeeaeeeenanns 39
RAte LIMITS cooiiiiiiiiiiiiiii e 39
Notifications & auto-refreshing tiCKELSc..viiiiiiii i e 40
AAMIN PNt e e e b e e e e s e sar e et e e s reesneeenneeen 40
FANololo 18] o AN Y=Tol U 41 £V ST PP O P TP UPOPTPUPTPN 40

SOUICE COTR ...ttt s b e s b e e s e e s ena e e sba e e sneeesbeee e 42

Y YT =T VZ=Y gl Uo Y = o PSP PRPPRRR 42
P T e T Lo) YT V=T o o 1Y SRR 42
Appendix B - tools/changeACCOUNTTYPE.PY .ccvveirieirieriierieesieesteestee st e steeseesteestaesreestaesraessaesanesaresans 55

(O T= o Aol] o) £ OSSP R ORI 55
ApPPENndiX C - StatiC/SIC/CONSTANTS.JS. . cviiireeeitiiectie ettt ettt eeteeeeteeeetreeereeebeeeteeeteeenaeeesseeens 55
Appendix D - static/src/tiCKEITOOIS.|S ..iiiuiiiiiiiiiiicie ettt r e s e b e e are e abe e sare e 55
APPENiX E - StatiC/SIC/USEITOOIS.JS .ueiiuiiiiiieeiicciee ettt ettt et e et e et e e tee s re e e reeebeeeree s 58
Appendix F - static/src/jwt-decode.js (sourced from GitHUD)c.ccoeieiiiiiiiiciicceeeee e, 61

SEATIC ClIENT FIlES e s st 63
Appendix G - templates/base.ntml..........oovi it 63
Appendix H - templates/home.ntmlcc.eioiiiiiiece ettt et et 64
Appendix | - templates/login.html.........coooiiiiii e e e e e 66
Appendix J - templates/profile.htmlccoioiiioi e e 67
Appendix K - templates/register.ntmloouiiiiiiiiiei et 68
Appendix L - templates/ticket/newW.html.........coooiiiiiiie e 69
Appendix M - templates/ticket/ticket. ntml.......c.oooviiiiiiiicce e 69
APPENAIX N - SEALIC/STYIR.CSS ettt ettt e e e e e te e e s teeeetbeesabeeebeesbeeeseean 72

RETEIENCES ...ttt et e e st e e sab e e et e s st e s eareesnneesneees 74

Source code available @ github.com/0xShay/SupportMe

Page |3

ANALYSIS

AlM

My sister works at a dance studio and often has to deal with many enquiries and issues.
Usually, people raise their issues via a telephone call or by email.

The development of a web-based support ticket system would provide a central service
which users can use to submit issues, and will also allow for assistants to quickly see
unclaimed or unanswered tickets and respond to them promptly.

EXISTING ISSUES

Besides using phone calls and email replies, another existing solution for clients to be able
to raise concerns and ask questions is a live-chat service, usually embedded into the corner
of a website.

After discussions with assistants currently working at the studio, the following issues have
arisen:

“As there are multiple people working in the office at different times,
we frequently miss each other’s messages and have to fill each other
in a lot, taking up lots of precious time.”

Phone calls can often lead to miscommunication between both parties, and emails can get
easily buried deep into a company’s inbox, leaving issues unsolved for large periods of time.
A ticket system would allow for both customers and assistants to respond when they’re
ready to as well as preserving the state of the situation.

“At the studio we struggle to track inquiries and requests from
students and clients and information often gets mixed up between
those requesting help.”

Allowing for historical ticket messages to be viewable when going to a ticket’s page would
help alleviate any confusion and miscommunication regarding customers’ issues.

EXISTING SOLUTIONS

One existing solution for the studio is hosting and maintaining a live chat service in the form
of a website. However, while a live chat service may offer fast response times, the company

I”

will need to hire many workers to be able to sit behind a “portal” ready to answer questions

Source code available @ github.com/0xShay/SupportMe

Page |4

and deal with concerns on a 24/7 basis, and this is simply not financially feasible for the
studio.

Another existing solution for the studio is using an already available commercial solution
which allows for customers to open support tickets, however many commercial solutions
are highly priced and offer services that the studio simply isn’t interested in.

4 2. zendesk

For example, Zendesk is a commercially available support ticket system which the studio
was initially considering, however it offers a lot of features which the studio is realistically
very unlikely to make full use of.

Zendesk offers an “industry-leading” ticket system, with Al-powered automated answers,
detailed reporting and analytics, and data and file storage, just to name a few features of
the most basic plan.' This plan is £39 per agent per month, and considering that the studio
won’t be using most of the features on the plan, paying a cost this big simply doesn’t make
financial sense.

The studio isn’t interested in Al-automated answers or heavy analytics/data collection —
they just want a simple system which allows for customers and assistants to communicate
smoothly and solve small-scale problems.

OBJECTIVES

END-USER UTILITY

1. New users must be able to register a new account.
a. Onregistration success, they should automatically be logged in.

2. Returning users must be able to log into an existing account.
a. Once users are logged in, they should be sent an authentication token which
they can store in local storage — this will be used as authorization for all

future requests.

3. Users should be able to edit their password and profile picture.

Source code available @ github.com/0xShay/SupportMe

Page |5

4. Users should be able to log out of their account, clearing the authentication token
from their local storage and displaying a success message.

5. Customers need to be able to open support tickets.
a. Once a support ticket has been opened they should be able to access it at a
specific link.
b. They must be able to send messages in the support ticket.

6. Assistants need to be able to read open support tickets.
a. They must be able to send messages in the support ticket.
b. They must also be able to mark a support ticket as “closed” or “open”.

STRUCTURE

1. Create SQLite database.

a. The database should contain any of the tables required and be in the correct
format ready to execute SQL statements from the Flask web server running in
Python.

2. Create RESTful APl with Flask.

a. GET endpoints will be available so that data and information about tickets,
users and messages can be retrieved directly from the database and returned
in the request response.

b. POST endpoints will be available that take JSON inputs which will allow for
data regarding tickets, users and messages to be modified, as well as
facilitating any other actions that a user may execute, such as (but not limited
to):

i. Loggingin

ii. Signing out
iii. Creating tickets
iv. Closing tickets

c. The RESTful APl will interact directly with the local SQLite database in order
to read and update stored records.

3. Create front-end endpoints with Flask.

a. Adefault set of pages written entirely in HTML, CSS and JS will be accessible
via additional endpoints in the Flask server.

b. These pages will interact directly with the RESTful endpoints, in order to
allow users to interact with the support ticket system through a default
standardized graphical user interface (GUI).

4. Scalability

Source code available @ github.com/0xShay/SupportMe

Page |6

a. By creating a RESTful API, in the future this will allow me (or other
developers) to easily create their own custom interfaces in order to interact
with the system. For example, if further down the line a mobile app is to be
created that interacts with the system, the app can call the GET and POST
endpoints on the RESTful API in order to allow users to interact with the
mobile app, allowing for the system to be easily scaled and highly adaptable
for the end-user.

DESIGN

WEB SERVER

The server will be split into two parts — a client-side and a server-side. The entire application
will work as a client-server model.

The back-end server will be running Flask (Python), and will communicate with a local SQLite
database to store data regarding users, tickets and messages.

The Flask server will have POST endpoints and the front-end will be comprised of static
HTML/CSS/IS files which communicate via built-in HTML/JavaScript methods (HTML form
submission & JS fetch).

Splitting up the application into a client-server model will allow for testing to be done on
individual sections in a more organized manner, as well as allowing for the back-end to act
as a baseplate for the front-end once completed.

SQL LAYOUT

The Flask back-end will store data in a local SQLite database, which will hold site-related
information.

The database will comprise of three main tables:

- The User table will store information about registered users, including both
customers and assistants. This will consist of unique user IDs for every user (primary
key), as well as key information such as usernames, passwords, and metadata
including when the account was created and the type of account.

- The Ticket table will store information about user-opened tickets. They will be
identifiable by unique IDs (primary key) and will store information about the
customer and assigned assistant (if there is one assigned), as well as metadata
including when the ticket was opened and closed.

Source code available @ github.com/0xShay/SupportMe

Page |7

- The Message table will hold the content and metadata of all messages that have
been sent in tickets by users, whether that be by a customer or assistant. Metadata
will include the time the message was sent, as well as the ticket status at the time of
the message being sent.

User

opens sends

Ticket

contains —< Message

“USER” TABLE

User(userlD, username, password, createdAt, accountType, profilelcon, email)

Column Name Data Type Description Example Value(s)
userlD INTEGER A unique numerical identifier |1, 2,3,4

for each user, which auto-

increments.
username TEXT A string that can be chosen by | “John”

the user, which displays as
their display name in support
tickets.

password TEXT A string that the user will use | “securepassword123”
to authenticate themselves
when logging in.

createdAt INTEGER A UNIX-based timestamp 1678958929
representing when the user
account was created.
accountType INTEGER Either 1 (customer) or 2 1
(assistant) to represent the
user’s account level.

profilelcon TEXT A string representing a “/profile-
relative path location from icons/blue.png”
the web server to the user’s
profile icon.

Source code available @ github.com/0xShay/SupportMe

Page |8

email

TEXT

A string representing the
email address that the user
used to create their account.

“john@Ilavabit.com”

“TICKET” TABLE

Ticket(ticketID, customerID, assistantID, openedAt, closedAt, title)

Column Name

Data Type

Description

Example Value(s)

ticketID

INTEGER

A unique numerical identifier
for each ticket, which auto-
increments.

1,23,4

customerlD

INTEGER

A numerical identifier which
refers to the ID of the ticket
creator in the “User” table.

assistantID

INTEGER

A numerical identifier which
refers to the ID of the ticket
assistant in the “User” table.

openedAt

INTEGER

A UNIX-based timestamp
representing when the ticket
was opened.

1678958929

closedAt

INTEGER

A UNIX-based timestamp
representing when the ticket
was closed (or -1 if the ticket
is still open).

-1, 1678959041

title

TEXT

A string title which is defined
by the customer when the
ticket is created.

“Help, the fans aren’t
working in Studio 1.”

“MESSAGE” TABLE

Message(messagelD, ticketID, authorID, body, sentAt)

Column Name Data Type Description Example Value(s)
messagelD INTEGER A unique numerical identifier |1, 2,3,4
for each ticket, which auto-
increments.
ticketID INTEGER A numerical identifier which 1
refers to the ID of the ticket
in the “Ticket” table.
authorlD INTEGER A numerical identifier which 1
refers to the ID of the
message sender in the “User”
table.

Source code available @ github.com/0xShay/SupportMe

Page |9

TEXT A string representing the “The fans in the
content of the message. studio don’t seem to
be working properly, |
think it might be
something to do with
the switch.”

sentAt INTEGER A UNIX-based timestamp 1678959041

representing when the
message was sent.

ENDPOINTS

These endpoints will act as the backbone, and the entire system’s functionality will be

useable with these endpoints alone.

SERVER-SIDE ENDPOINTS

POST /register — this endpoint will take in user registration data in JSON and create
an account (or return an error)

POST /login — this endpoint will take in user credentials (in JSON) and generate and
return a web token or return an error

GET /get-profile/<int:user_id> — this endpoint will query the database for the user
with the given ID and return a JSON response if the user is authenticated to get
profile information for that user

POST /ticket/new — JSON can be posted here to create a new ticket with a given title
and initial message

GET /get-ticket/<int:ticket_id> — this endpoint will return a JSON object containing
information about the ticket, e.g. when it was opened, when it was closed, the
assigned assistant

POST /ticket/<int:ticket_id> — this endpoint will be used to append messages to the

ticket — the client-side will use this endpoint when users want to send messages or
run open/close commands

Source code available @ github.com/0xShay/SupportMe

Page |10

7. GET /get-open-tickets/<int:user_id> — this endpoint can be used to get a user’s open
tickets

8. GET /get-closed-tickets/<int:user_id> — this endpoint can be used to get a user’s
closed tickets

9. GET /get-unclaimed-tickets — this endpoint can be used to get a list of claimable
tickets (with no assistant assigned to them)

10. GET /get-messages/<int:ticket_id> — this endpoint will return a JSON response with a
list of messages sent in the ticket with the given ID

11. POST /profile — when updating profile information, this endpoint can be used to
update any records in the database regarding user information

CLIENT-SIDE ENDPOINTS

Any endpoints below will simply be rendering HTML/CSS/JS and return it to the client — they
aren’t crucial to backend functionality and simply add a layer over raw API calls from the
client’s browser to the server.

As a result, server-side and client-side endpoints will be tested separately during the testing
phase.

1. GET /home - this will display different information depending on the type of user
account that’s logged in — if an assistant is logged in a list of unclaimed and claimed
tickets will appear, and if a customer is logged in, they will see a list of their open
and closed tickets

You are logged in, JaneDoe

Tickels
Open Claimable

2420 dio poowing clash #4568 dio pooking clash
C_Io_sed
2. GET /register — this will have a form, and on submission it will POST to the /register

endpoint, displaying the result of the request on the page

Source code available @ github.com/0xShay/SupportMe

Page |11

3. GET /login — this will have a form, and on submission it will POST to the /login
endpoint, displaying the result of the request on the page

4. GET /ticket/new — this will have a form, and on submission it will POST to the
/ticket/new endpoint, displaying the result of the request on the page

5. GET /ticket/<int:ticket_id> — this endpoint will return a rendered template page,
displaying the most recent messages in the ticket as well as other key information

6. GET /profile — this page will act as an “edit profile” page where users can update
their account information and profile picture

Change profile picture

Username

JohnDoe Emall
New password
Enter old/current password to confirm changes

To prevent issues being left unsolved for large periods of time, “inactive tickets” will display
on assistants’ dashboards, sorted by the time tickets were opened. This will allow old tickets
to remain relevant if they are still open, and will hopefully remind assistants that the ticket
is still awaiting a response.

DEALING WITH MALFORMED REQUESTS TO FLASK ENDPOINTS

One problem | will face when creating this system is the risk of malicious users sending
malformed JSON requests to Flask endpoints. | don’t want the server to be negatively
impacted by malicious client machines sending requests with invalid JSON in the body of the
request.

By wrapping POST requests where JSON input is accepted in the request body in a Python
try-except block, | can return an error code if the request is interpreted as malformed by the
server.

CONNECTING TO AND INTERACTING WITH THE SQLITE DATABASE

Source code available @ github.com/0xShay/SupportMe

Page |12

The sglite3 PIP library documented extensively at
https://docs.python.org/3/library/sqlite3.html will allow me to interact with the local

database file to perform queries and retrieve data from the database.

| will need to perform a range of CRUD (create, read, update, delete) functions in response
to GET and POST requests sent by clients to the Flask server. A few examples include:

- An INSERT query to create new users on registration

- A SELECT query to read users’ login information when verifying credentials

- An UPDATE query to update a ticket’s assigned assistant ID when a new assistant
claims it

| will also need to ensure that | use prepared statements to prevent any possible SQL
injection attacks from occurring, as a result of a malicious user attempting to send in a
malicious query which could harm the database and cause data loss or corruption.

HANDLING USER AUTHENTICATION

To authenticate users, | will be making use of JSON Web Tokens. As outlined in RFC 75197, a
JSON Web Token (JWT) is a “compact, URL-safe means of representing claims to be
transferred between two parties”. | will be able to leverage the use of signed JWTs to
encrypt unique tokens for logged in users. As a result, session data will not need to be
stored in any substantial capacity on the server-side, and the client-side will be able to use
their JIWT whenever they make a request to the server. This enables the system to work as a
thick-client model, where clients handle their own authentication for the most part, and the
server does minimal work to decrypt and verify keys.

On both the client-side and server-side, | will need to be able to quickly encrypt, decrypt and
verify web tokens. On the server-side, | will need to predefine a secret phrase, and create a
subroutine which takes in inputs regarding the user to generate a token for, returning a web
token that the user can store in their local storage on the client-side. When the user then
makes requests with their token, the server will also need a subroutine to decrypt the web
token to get the user ID of the request sender.

Not only will the server need to be able to use JWTs in this manner, but on the client-side,
the only value stored in local storage will be the web token, so if | want to get information
about the logged in user’s profile, | will need to be able to decode the user’s stored token to
get their user ID, and then make a request to the server to get the user’s profile
information.

Source code available @ github.com/0xShay/SupportMe

https://docs.python.org/3/library/sqlite3.html

Page |13

For the server-side, | plan to use the PyJWT module (outlined at
https://pyjwt.readthedocs.io/en/latest/) to encode and decode access tokens when

requests are made to protected endpoints.

Request is made to protected
endpoint on server

Return "403 Forbidden” error code, user is not Proceed to endpoint

- 3 i
Is authorization header set? ND—::; permitted to execute the request logic
Y Fa—

YES

Does the
authorization header contain
a JWT token?

no NO YES NO

YES
Is the uzer 1D
WA
Deu:ode_}rékseonhd Web authenticated to make the YES Has the web token expired?
request?

On the client-side, | will need to decode JWTs in JavaScript — | intend to make use of the
open-source JWT decode tool at https://github.com/authO/jwt-decode to decrypt tokens

and get user data where necessary in the front-end. For example, | will need to decrypt the
user’s stored web token when | want to get the user ID to get profile information about the
logged in user.

SERVING DYNAMIC CONTENT ON THE HOMEPAGE

As briefly stated above, the homepage should show logged in users a list of their open and
closed tickets. Most recently opened tickets will be displayed at the bottom.

When assistants log in, alongside open and closed tickets, they will also be able to see a list
of unclaimed tickets that they can claim. The earliest-most opened tickets will be shown at
the top, to create a “priority queue” of tickets. It was a large concern of my client that many
customers’ concerns were being left abandoned after large periods of time — this can be
avoided by ordering unclaimed tickets by the time they were opened.

PROMOTING CUSTOMER ACCOUNTS TO ASSISTANT ACCOUNTS AND VICE-VERSA

Source code available @ github.com/0xShay/SupportMe

https://pyjwt.readthedocs.io/en/latest/
https://github.com/auth0/jwt-decode

Page |14

| don’t intend to add functionality to the site to change account types —instead I'd like to
leave that up to the server administrator. For the studio, a simple interface to change a
user’s account type using their user ID will suffice.

| will create a simple Python script, which takes in two inputs (user ID and account type),
opens a connection to the local database, performs the single UPDATE operation and prints
out a response. To change an account’s type, the server administrator will simply have to
run a Python script and enter some values. If they want to update a customer account to an
assistant account, they just need the ID of the customer account, and direct access to the
server on which the database file is located.

Source code available @ github.com/0xShay/SupportMe

TECHNICAL BUILD

Page |15

DATABASE INITIALIZATION

As previously stated, the database of choice is a local SQLite database, stored as a file on the

same machine as the Flask server which will be delivering content.

| have created an empty data.db file in the project’s root directory using the DB Browser for

SQLite. This file will store all data regarding users, tickets and messages. The table schemas

were created with the DB Browser for SQLite (DB4S) software and the table creation

commands are shown below:

CREATE TABLE "User" (
"userID" INTEGER,
"username" TEXT,
"password" TEXT,
"createdAt" INTEGER,
"accountType" INTEGER,
"profileIcon" TEXT,
"email" TEXT,
PRIMARY KEY("userID" AUTOINCREMENT)

)5

The “User” table will store all the information regarding registered users and assistants. It

will store usernames, passwords, as well as when the user account was created, the type of

account and the email address that the user registered with.

CREATE TABLE "Ticket" (
"ticketID" INTEGER,
"customerID" INTEGER,
"assistantID" INTEGER,
"openedAt" INTEGER,
"closedAt" INTEGER,
"title" TEXT,
FOREIGN KEY("customerID") REFERENCES "User"("userID"),
FOREIGN KEY("assistantID") REFERENCES "User"("userID"),
PRIMARY KEY("ticketID" AUTOINCREMENT)

);

The “Ticket” table will store metadata and key information about open and closed tickets. It

will store information about who the customer is (customerID) and the assistant assigned to

the ticket (assistantlD). It will also store when the ticket was opened (and closed if it has

been closed).

Source code available @ github.com/0xShay/SupportMe

Page | 16

CREATE TABLE "Message" (
"messageID" INTEGER,
"ticketID" INTEGER,
"authorID" INTEGER,
"body" TEXT,
"sentAt" INTEGER,
FOREIGN KEY("ticketID") REFERENCES "Ticket"("ticketID"),
FOREIGN KEY("authorID") REFERENCES "User"("userID"),
PRIMARY KEY("messageID" AUTOINCREMENT)

)5

The “Message” table will store information about messages that customers and assistants
send in tickets. They will link to users by authorlD foreign key and will be assigned to a ticket
via the ticketID foreign key. When the message was sent will also be stored.

INSERT INTO "User"

("userID", "username", "password", "createdAt", "accountType",
"profileIcon", "email")

VALUES

(0, "System", "securepassword", @, 2, "/profile-
icons/admin.png", "Ed_Snowden@lavabit.com");

A “System” account will also be pre-created — this account will be responsible for sending
system messages in tickets, notifying users when a ticket’s status has changed or when an
assistant has claimed a ticket.

CONSTANTS

At the top of the main server.py file, by defining a set of constants, | can maintain referential
integrity throughout my program, and instead of having integers spontaneously spread out
in code, | can refer to predefined constants.

ACCOUNT TYPE CUSTOMER = 1
ACCOUNT TYPE ASSISTANT = 2

TICKET STATUS OPEN = 1

TICKET STATUS CLOSED 2

SYSTEM USER_ID = 0

These constants are also defined in a constants.js static file, accessible from the client-side:

const ACCOUNT TYPE CUSTOMER = 1

Source code available @ github.com/0xShay/SupportMe

Page |17

const ACCOUNT TYPE ASSISTANT = 2

const TICKET STATUS OPEN = 1

const TICKET STATUS CLOSED 2

const SYSTEM USER ID = 0

DEALING WITH MALFORMED REQUESTS TO FLASK ENDPOINTS

In order to protect the web server from being susceptible to malformed HTTP requests on
the post endpoints, | can wrap any POST request logic in a try-except statement — this
means if any JSON is invalid and an error is thrown, the code in the “except” part of the
statement will execute, returning an error code in the response and notifying the user that
the request was invalid.

elif request.method == 'POST':
try:
REQUEST LOGIC GOES HERE
except:
return ({ "error": "Server failed to parse the request." }, 400)

CONNECTING TO AND INTERACTING WITH THE SQLITE DATABASE

| will make use of the sgqlite3 library as planned, as it is well-documented and updated
regularly. It allows me to connect to the database and execute queries easily using cursor
objects.

import sqglite3

To connect to the database, I’'m making use of Python’s built-in with keyboard to maintain
an open connection with the local database in different subroutines:

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

Any user-inputted values need to be handled securely to prevent SQL injection attacks from
occurring. This can be achieved by using prepared statements when executing queries:

cursor.execute (

"INSERT INTO User (username, password, createdAt, accountType,
profileIcon, email) VALUES (2, 2, 2, 2, 2, 2)",

[username, password, int (time.time()), ACCOUNT TYPE CUSTOMER,
"/profile-icons/blue.png", email]

)

Source code available @ github.com/0xShay/SupportMe

Page |18

| will need to execute queries when creating new user accounts, validating login
information, creating new tickets, getting ticket information, creating new messages, and
getting a list of messages from the database.

When using the SELECT keyword in queries, | can use cursor.fetchall () to get all of
the returned rows. For example, | used a SELECT statement to validate a user’s login
credentials as seen below:

def login_user (username, password):

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

cursor.execute ("SELECT userID, password, accountType FROM User

WHERE username = ?", [username])
user list = cursor.fetchall()
if len(user list) == 0:

return (False, "A user with the supplied username and password
was not found.")

_user id, password, _account type = user list[O0]

if password == password:
access_token = generate access_ token(user id, _account type)
return (True, access_token)
else:
return (False, "A user with the supplied username and password
was not found.")

| begin by opening a connection to the database, and then establish a local cursor variable.
After executing the SELECT statement (searching by the username that is the first parameter
of the function), | make use of the cursor’s fetchall method to get a list of returned
rows.

| can check if there is a user registered with that username or not by simply checking the
number of records that were returned — if O records were returned then the query was
unable to find any users with that username.

Further below, if a row was returned from the query it means that a user with the supplied
username exists in the database. An if statement is used to check if the passwords match,
and if they do | generate and return an access token with the generate access token
method explained in more detail below. However, if the passwords don’t match | return an
error in the same fashion as when the usernames didn’t match.

By returning the same error message in both cases, it eliminates the possibility of a user
enumeration vulnerability' — an attacker cannot determine if a username is present or not

Source code available @ github.com/0xShay/SupportMe

Page |19

in the database by simply brute-forcing different usernames. This reduces the future risk of
social engineering attacks occurring amongst others.

HANDLING USER AUTHENTICATION

When encrypting JSON Web Tokens, | will need a server-side secret key. To generate a
relatively insecure” key | used list comprehension and Python’s join function to produce
64 randomly selected hex characters:

"".join([random.choice(["O", "1", n2n, n3n, n4||, ||5||, "6", n7n, "8", n9n,
"A", an’ "C", "D", "E", "F"]) for i in range(64)])

When used in production, a more secure private key can be generated through
cryptographically secure methods and the default one can be replaced at the top of the file.

On the server-side, JWTs will need to be generated whenever a user:

a) registers a new account, or
b) logs into an existing account.

When a user registers with a new account, on the server’s receipt of a POST request to the
/register endpoint, the server will proceed to run create user, which attempts to insert
the new user into the database. If successful, the generate access token methodis
then called, and the access token is returned to the request sender.

When a user logs in to an account, on the server’s receipt of a POST request to the /login
endpoint, the server first checks that the user’s credentials match the credentials stored in
the database, and then proceeds to invoke the generate access token method,
returning the result in the response.

The PyJWT library allows me to encode and decode JSON Web Tokens on the Python server
with ease.

import jwt

def generate_access_token (user id, account type):
access token = jwt.encode ({
"user id": user id,
"account type": account type,
"exp": int (time.time()) + 86400
}, JWT SECRET KEY, algorithm="HS256")
return access_token

Source code available @ github.com/0xShay/SupportMe

Page | 20

| start by importing PyJWT (import jwt) - this library gives me access to two methods
that will come in useful when | generate and verify access tokens: jwt .encode and
jwt .decode.

The generate access_token method is shown above — the subroutine has two
parameters: a user id and the user’s account type. These two properties, along with an
expiry date are encoded using PyJWT’s encode method and signed using the secret key
defined at the top of the file.

The “exp” property of the token allows for the user’s requests to become invalidated after
86400 seconds (24 hours), forcing them to revalidate themselves. This allows for increased
user security and can minimise the risk of confidential messages being leaked.

On the client-side, on every page, the getLoggedInUser () JavaScript method is called,
which is defined in the userTools.js script, which is loaded into every page.

const getDecodedAccessToken = () => {
return localStorage.getItem("access token") != null ?
jwt decode (localStorage.getItem("access token")) : null;

}

function getLoggedInUser () {
let d at = getDecodedAccessToken();
if (d_at == null) return null;
if (d at["exp"] < (Date.now() / 1000)) {
localStorage.removeltem("access token");
return null

i

return d at;

In the getDecodedAccessToken function, | make use of a jwt decode method — this
function is defined in /src/jwt-decode.js, and this open-source tool has been obtained from
https://github.com/authQ/jwt-decode.

In the getLoggedInUser function shown above, the access token is decoded, and if it
has expired, it is removed from local storage, and the function returns “null”. On pages
where the user must be logged in, the line below is present:

if (getLoggedInUser () == null) window.location.href = "/login";

If the user is not logged in or their access token is invalidated, the user will be redirected to
the /login page.

async function register () {
let username input = document.getElementById("username input");

let email input = document.getElementById("email input");
let password input = document.getElementById("password input");

Source code available @ github.com/0xShay/SupportMe

https://github.com/auth0/jwt-decode

Page |21

let passwordc_input = document.getElementById ("passwordc input");

if (password input.value != passwordc input.value) return
alert ("Passwords do not match.")

const res = await (await fetch('/register', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
}I
redirect: 'manual',
body: JSON.stringify ({
username: username input.value,
email: email input.value,
password: password input.value

})

})) .Json();
if (res["error"] != undefined) {
alert (res["error"]);
} else {
localStorage.setItem("access token", res["access token"]);
window.location.href = "/home";
}i
}
async function login () {
let username input = document.getElementById("username input");
let password input = document.getElementById("password input");
const res = await (await fetch('/login', {

method: 'POST',
headers: {
'Content-Type': 'application/json'
}I
redirect: 'manual',
body: JSON.stringify ({
username: username input.value,
password: password input.value

})

1)) .gson();

if (res["error"] != undefined) {
alert (res["error"]);

} else {
localStorage.setItem("access token", res["access token"]);
window.location.href = "/home";

i

}

The register () and 1login () functions are called by buttons in HTML, and they make
use of local storage to store access tokens that are returned by the server.

Source code available @ github.com/0xShay/SupportMe

Page |22

When sending requests to the server from the client-side in JavaScript, | will use fetch to
pass the stored access token into the Authorization header field:

const res = await (await fetch('/ticket/' + ticketID, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + localStorage.getlItem("access token")
}I
body: JSON.stringify ({
message: message input.value
})
1)) .json();

This access token can then be picked up server-side and verified:

def verify access_token (access token):
try:
d at = jwt.decode(access_ token.split (" ") [1l], JWT SECRET KEY,
algorithms=["HS256"])
if d at["exp"] < time.time():
return None
else:
return d _at
except:
return None

@App.route ('/get-profile/<int:user id>', methods=['GET'])
def get profile by user id reqg(user id):
if request.method == 'GET':

auth user =
verify access token(request.headers.get ("Authorization"))
if auth user == None:
return ({ "error": "User is not authenticated to make this
request." }, 403)

As shown above, the verify access token method uses PyJWT's decode method to
get a JSON representation of the encoded value. If the access token is malformed, since it’s
in a try-except block, the function simply returns None. However, if the token is not
malformed, the expiry date property (“exp”) of the token is checked, and if the token is
expired the method returns None. If the token is valid, the JSON representation of the
token is returned, containing the user’s user ID and the expiry date of the token.

If the user is not authenticated for the request, a (Forbidden) 403 error will be returned to
the client.

Source code available @ github.com/0xShay/SupportMe

Page |23

SERVING DYNAMIC CONTENT ON THE HOMEPAGE

If the user is not logged in to an account, they will be redirected to the login page.

This can be easily achieved by calling the getLoggedInUser JavaScript function to check if
there is a valid access token, and if there isn’t, the page can redirect to the login page:

if (getLoggedInUser () == null) window.location.href = "/login";

If the user is logged into an account, their account type (decoded from their access token)
will be used to decide what content to serve.

Both customers and assistants should be able to see open and closed tickets that they are
involved in, however on top of that, assistants should be able to see claimable tickets.

@App.route ('/get-open-tickets/<int:user id>', methods=['GET'])
@App.route ('/get-closed-tickets/<int:user id>', methods=['GET'])
@App.route (' /get-unclaimed-tickets', methods=['GET'])

| made these three routes so that customers and assistants can both request open and
closed tickets, where they are either the customerID, or assistantID of that ticket:

SELECT ticketID, customerID, assistantID, openedAt, closedAt, title FROM
Ticket WHERE (customerID = ? OR assistantID = ?) AND closedAt = -1 ORDER BY
openedAt ASC;

SELECT ticketID, customerID, assistantID, openedAt, closedAt, title FROM
Ticket WHERE (customerID = ? OR assistantID = ?) AND closedAt != -1 ORDER
BY closedAt DESC;

Whilst assistants can also get a list of unclaimed tickets:

SELECT ticketID, customerID, assistantID, openedAt, closedAt, title FROM
Ticket WHERE assistantID = -1 ORDER BY openedAt ASC;

It was a large concern of my client that many customers’ concerns were being left
abandoned after large periods of time. By ordering unclaimed tickets by the time they were
opened, this allows for assistants to see which tickets were opened first, and prioritize
resolving older issues before moving on to solving newer ones.

Source code available @ github.com/0xShay/SupportMe

Page | 24

PROMOTING CUSTOMER ACCOUNTS TO ASSISTANT ACCOUNTS AND VICE-VERSA

A file can be found in the /tools directory, named “changeAccountType.py” — the server
admin can run this file, inputting a user ID and the level that they want to set the user
account at. This will update the database, or return any relevant errors to the console:

import sqglite3

user id = int (input ("Enter the user ID of the account: "))
account type = int(input ("Enter an account type to set (1 = customer, 2 =
assistant): "))

with sglite3.connect("../data.db") as connection:

try:
cursor = connection.cursor ()
cursor.execute ("UPDATE User SET accountType = ? WHERE userID = 2;",
[account type, user id])
if cursor.rowcount ==
print ("User with given ID was not found in the database.
Terminating.")
else:
print (f"User with ID {user id}'s account type has been
successfully updated to {account type}.")

except sglite3.Error as error:
print (error)

The server admin can therefore notify any assistants that they should register a customer
account, and then their accounts can be manually promoted to assistant accounts so that
they can claim tickets. Customers can open tickets; however assistant accounts are unable
to open tickets. If an assistant wants support, they will have to create a new customer
account and open a ticket through that.

For my client, this is not an issue, since all assistants will be using email accounts on the
studio’s business domain for their assistant accounts, and so if the assistants want to
request support, they will be encouraged by their employer to create a separate personal
account with a personal email address.

Source code available @ github.com/0xShay/SupportMe

TESTING

Page | 25

Testing will be split into two sections — server-side endpoints will be tested with inputs for

expected outputs, and client-side endpoints will be tested separately, and tests will be

displayed on a video.

TESTING SERVER-SIDE ENDPOINTS (BACK-END)

Each server-side endpoint will be tested with valid, and erroneous data, and the input,

expected output and result of each test will be displayed in the table below.

POST /register

Expectation | The details supplied in this request should all be valid, and an access token
should be returned.
Request
Headers
Request (
B°dy "username": "John",
"email": "johndoe@website.net",
"password": "securepassword"
}
Request
{ "access_token": "eylh...XLfk" }
Response
Test Result | - The server returned an access token which can be decoded to get the
user ID, account type, and expiry date of the token.

Expectation | The password provided here is less than the minimum number of
characters (8), and so an error should be returned.
Request
Headers
Request (
BOdy "username": "Jane",
"email": "janedoe@website.net",
"password": "2short"
}
Request
{ "error": "Password must be at least 8 characters." }
Response
Test Result | v - The account was not created and the server responded with an error.

Source code available @ github.com/0xShay/SupportMe

POST /login

Page | 26

Expectation

The details supplied in this request should all be valid, and an access token
should be returned.

Request
Headers
Request (
BOdy "username": "John",
"password": "securepassword"

}
Request

{ "access_token": "eyJh..208M" }
Response
Test Result | - The server returned an access token which can be decoded to get the

user ID, account type, and expiry date of the token.

Expectation

A user with the supplied username and password does not exist, and so
this request should return an error.

Request
Headers
Request ‘
BOdy "username": "Tommy",
"password": "tommyspasswordl234"

}
Request . .

{ "error": "A user with the supplied username and password was not found."
Response)
Test Result | - The username-password pair was not found in the database and the

server responded with a suitable error.

GET /get-profile/13

Expectation

The user ID provided (13) is the user ID of the newly created "John"
account, and the access token is John's token (who is authorized to make
this request), so John's profile information should be returned.

Request (

Headers "Authorization": "Bearer eyJh...208M"
}

Request

Body

Request (

Response

"user": {

Source code available @ github.com/0xShay/SupportMe

Page |27

"account_type": 1,
"created_at": 1676902471,

"profile_icon": "/profile-icons/red.png",
"user_id": 13,
"username": "John"

}

Test Result

Vv - As expected, information about the user's profile was returned.

Expectation | Since no access token has been provided, and this request requires
authentication, the server should respond with an authentication error.

Request

Headers

Request

Body

Request
{ "error": "User is not authenticated to make this request." }

Response

Test Result | - The server returned an authentication error as intended.

POST /ticket/new

Expectation

The details supplied to open the ticket match the validation requirements,
and so this request should successfully create a ticket and return the ticket
ID.

Request (

Headers "Authorization": "Bearer eyJh...208M"
}

Request

Bod {

Yy "ticket_title": "The toilet roll is finished",
"message": "The toilet roll.. could get it refilled?"

}

Request . . .
{ "message_id": 74, "ticket_id": 9 }

Response

Test Result | - As intended, a new ticket was created and the ID was returned in the

response body.

Expectation

In this request, a ticket title was not provided, only a message. The server
should respond with an error since the user has not supplied all the
required information to open a ticket.

Request
Headers

{
}

"Authorization": "Bearer eyJh...208M"

Source code available @ github.com/0xShay/SupportMe

Page | 28

Request
Bod {
ody "message": "The toilet roll.. could get it refilled?"

}

Request
{ "error": "The request failed." }

Response

Test Result | - The response returned with error code 400 (BAD REQUEST) since the
information provided was insufficient to open a ticket.

GET /get-ticket/9

Expectation

The response should contain information about the newly created ticket
with ID 9.

Request ¢
Headers "Authorization": "Bearer eyJh...208M"
}
Request
Body
Request ‘
Response "ticket data": {
"assistant_id": -1,
"closed_at": -1,
"customer_id": 13,
"opened_at": 1676904963,
"ticket_id": 9,
"title": "The toilet roll is finished"
}
}
Test Result | - Information about the ticket was returned as expected.

Expectation

The token provided is for a customer account who is not involved in any
way with ticket 9 - they should be unauthorized to get information about
this ticket.

Request (
Headers "Authorization": "Bearer eyJh...42G4"
}
Request
Body
Request
{ "error": "User is not authenticated to make this request." }
Response
Test Result | - The server returned an authentication error as intended.
POST /ticket/9

Source code available @ github.com/0xShay/SupportMe

Page | 29

Expectation

Since a valid message is being sent to the ticket by the customer who
opened it, the request should be successful.

Request (
Headers "Authorization": "Bearer eyJh...208M"
}
Request (
BOdy "message": "I believe it ran out last night."
}
Request
{ "message_id": 75, "ticket_id": 9 }
Response
Test Result | / - A new message was created in the database with ID 75, and no errors

were returned.

Expectation

should return an error.

Message length should be at least 8 characters - sending this short message

Request (
Headers "Authorization": "Bearer eyJh...208M"
}
Request c
Body "message": "help"
}
Request
{ "error": "Message length must be at least 8 characters - be
Response descriptive." }
Test Result | - As expected, an error was returned notifying the user of their poor

input.

GET /get-open-tickets/13

Expectation

A valid authentication token is being used to get a list of open tickets for
the logged in customer - the request should respond with a list of open
tickets for the user.

Request (

Headers "Authorization": "Bearer eyJh...208M"
}

Request

Body

Request
{ "tickets": [

Response (

"assistant_id": -1,
"closed_at": -1,

Source code available @ github.com/0xShay/SupportMe

Page |30

"customer_id": 13,
"opened_at": 1676904963,
"ticket_id": 9,
"title": "The toilet roll is finished"
}
11}

Test Result

Vv - The server responded with a list of tickets that are marked as OPEN
that involve the authorized user.

Expectation

With another user's authentication token, the request should fail, as only
the user themselves can see their own tickets.

Request ‘
Headers "Authorization": "Bearer eyJh...42G4"
}
Request
Body
Request
{ "error": "User is not authenticated to make this request."” }
Response
Test Result | - Since the user is not authorized to get user with ID 13's tickets, the

server returned an authentication error.

GET /get-closed-tickets/13

Expectation

Using the authentication token of an assistant account, this request should
return a list of tickets which have no assistant assigned to them.

Request (
Headers "Authorization": "Bearer eyJh...208M"
}
Request
Body
Request .
{ "tickets": [] }
Response
Test Result | - As expected, the server returned an empty list, since none of the user's

tickets are closed.

Expectation

With another user's authentication token, the request should fail, as only
the user themselves can see their own tickets.

Request
Headers

{
}

"Authorization": "Bearer eyJh...42G4"

Source code available @ github.com/0xShay/SupportMe

Page |31

Request
Body
Request . . .
{ "error": "User is not authenticated to make this request." }
Response
Test Result | - Since the user is not authorized to get user with ID 13's tickets, the

server returned an authentication error.

GET /get-unclaimed-tickets/13

Expectation

Using the authentication token of an assistant account, this request should
return a list of tickets which have no assistant assigned to them.

Request (
Headers "Authorization": "Bearer eyJh...WWA4"
}
Request
Body
Request)
{ "tickets": [
Response {
"assistant_id": -1,
"closed_at": -1,
"customer_id": 13,
"opened_at": 1676904963,
"ticket_id": 9,
"title": "The toilet roll is finished"
}
1}
Test Result | v - The server responded with a list of tickets that are marked as

UNCLAIMED as the user is an assistant who is authorized to make this
request.

Expectation

If the authentication token of a customer account is used, an
authentication error should be returned, as this request is exclusively for
assistant accounts.

Request (
Headers "Authorization": "Bearer eyJh...208M"
}
Request
Body
Request . . .
{ "error": "User is not authenticated to make this request." }
Response
Test Result | - Since the user is a customer account, they are not authorized to get a

list of unclaimed tickets, so the server returned an authentication error.

Source code available @ github.com/0xShay/SupportMe

Page |32

GET /get-messages/9

Expectation

This endpoint should return a list of messages that have been sent in the
ticket. It should return the two messages that have been sent by the
customer.

Request (
Headers "Authorization": "Bearer eyJh...208M"
}
Request
Body
Request
{ "message_list": [
Response {
"author_id": 13,
"body": "I believe it ran out last night.",
"message_id": 75,
"sent_at": 1676911540
3 A
"author_id": 13,
"body": "The toilet roll.. could get it refilled?",
"message_id": 74,
"sent_at": 1676904963
}
1, "ticket_id": 9 }
Test Result | / - A list of messages sent in the ticket were returned to the user, along

with message metadata.

Expectation

If an authentication token is not set in the headers, we cannot be certain
that the requester is authorized to view the messages so an error should be
returned.

Request (

Headers "Authorization": "Bearer eyJh...208M"
}

Request

Body

Request . . .
{ "error": "User is not authenticated to make this request."” }

Response

Test Result | V - Since no authentication token was set, an authentication error was
returned.

POST /profile

Expectation

The user's profile should be updated, and the endpoint should return a
success message.

Request
Headers

Source code available @ github.com/0xShay/SupportMe

Page |33

{
"Authorization": "Bearer eyJh...208M"
}
Request (
BOdy "new_password": "securepassword2",
"old_password": "securepassword",
"profile_icon": "/profile-icons/purple.png"
}
Request
{ "msg": "Profile has been updated." }
Response
Test Result | - The user's profile was successfully updated since a valid old password
was provided.

Expectation | Even though the authentication token is valid, since the wrong old
password was provided, the request should throw an authentication error
and not make any changes to the user's profile.

Request ‘

Headers "Authorization": "Bearer eyJh...208M"

}
Request (
BOdy "new_password": "randompassword",
"old_password": "nottoosure”,
"profile_icon": "/profile-icons/purple.png"
}

Request .

{ "error": "Incorrect password was provided." }

Response

Test Result | - The server responded with a 403 code, since an incorrect old password
was provided.

Below | test the try-catch statements | implemented, by sending malformed body

parameters to POST requests:

POST /register

Expectation | Since an invalid JSON body was provided in the body, the server should
respond with an error.

Request

Headers

Request

Body []

Request § o . "

Response { "error": "Server failed to parse the request." }

Test Result | - The server responded with a 400 BAD REQUEST error as expected.

Source code available @ github.com/0xShay/SupportMe

Page | 34

POST /login

Expectation | Since an invalid JSON body was provided in the body, the server should
respond with an error.

Request

Headers

Request

BOdy "Hello world!"

Request .

Response { "error": "Server failed to parse the request." }

Test Result | - The server responded with a 400 BAD REQUEST error as expected.

TESTING CLIENT-SIDE ENDPOINTS (FRONT-END)

FRONT-END TEST PLAN

To test the front-end | will create a video which demonstrates the utilization of every page

on the website.

1)

2)

3)

4)

5)

6)
7)

8)
9)

The customer will first try to log in and they should get an error due to not having an
account yet.

They should then try to register a new account, but the passwords should not match
(so an error should be returned).

Then, they should be able to successfully register after matching the passwords, and
be automatically logged in to the homepage, where they can see open and closed
tickets.

The customer will then open a support ticket, and it should take them to the ticket’s
page.

The customer will attempt to send a message in the ticket, and then go back to the
homepage.

The customer will now attempt to edit their profile.

The assistant will then register with a password that is too short, after which they
will put in a longer password and create an account.

The assistant should be redirected to the homepage after creating their account.
The server admin will run the changeAccountType.py script from the terminal to
promote the newly created account to an assistant account.

10) The assistant will log out and try to log in with an incorrect password.

11) The assistant will then log in with the correct password, and should be redirected to

the homepage, where they can see open, closed, and claimable tickets.

12) The assistant will click on the unclaimed ticket, and proceed to claim it.

Source code available @ github.com/0xShay/SupportMe

Page |35

13) The assistant will send a message in the ticket, and then close it.

14) The assistant will log out.

15) The customer will go to the homepage, see the ticket in the “closed tickets” section
and click on it.

16) The customer should be able to see the messages that the assistant has sent, as well
as when the ticket was marked as closed.

17) The customer will then proceed to log out.

FRONT-END TESTS
https://youtu.be/giKSIZR-KKO - 7517 NEA SupportMe front-end tests

(=] SupportMe

[OPEN] The toilet roll is finished
s

et 0]

Customer

- 00:00 - /login

- 00:10 - /register

- 00:23 - /home

- 00:27 - /ticket/new
- 00:42 - /ticket/1

- 00:59 - /profile

Assistant

- 01:18 - /register
- 01:35 - changeAccountType.py tool
- 01:46 - /login

Source code available @ github.com/0xShay/SupportMe

https://youtu.be/gjKSlZR-KK0
https://www.youtube.com/embed/gjKSlZR-KK0?feature=oembed

Page | 36

- 01:59- /home
- 02:02 - /ticket/1

The video above not only tests each front-end endpoint, but also shows where the project
has met the end-user utility objectives initially stated in the success criteria.

1. New users must be able to register a new account.
a. Onregistration success, they should automatically be logged in.
00:10, 01:18

2. Returning users must be able to log into an existing account.
a. Once users are logged in, they should be sent an authentication token which
they can store in local storage — this will be used as authorization for all
future requests.

01:46

3. Users should be able to edit their password and profile picture.
00:59

4. Users should be able to log out of their account, clearing the authentication token
from their local storage and displaying a success message.
02:25

5. Customers need to be able to open support tickets.
a. Once a support ticket has been opened they should be able to access it at a
specific link.
00:26
b. They must be able to send messages in the support ticket.
0043

6. Assistants need to be able to read open support tickets.
a. They must be able to send messages in the support ticket.
02:01
b. They must also be able to mark a support ticket as “closed” or “open”.
02:17

Source code available @ github.com/0xShay/SupportMe

Page |37

EVALUATION

SUCCESS CRITERIA

END-USER UTILITY

edit their password and
profile picture.

End-User Utility Objective Met? | Evaluation
1) New users must be able Users can go to the /register page, which will POST
to register a new account. to the /register endpoint on the server, with the
new user’s details. Once a response is received
a) Onregistration from the server, the /register page will redirect to
success, they should /home and the user will be automatically logged in.
automatically be
logged in. User feedback
“Brilliant, but it would be nice to have the set of
rules for a password to be valid show before the
user enters an invalid password, so that the user
can think of a valid password to begin with.”
2) Returning users must be If a user already has an account, they can go to the
able to log into an existing /login page and log in with their details, which will
account. POST to the /login endpoint on the server. The
server will respond with an error if the credentials
a) Once users are are invalid, or an access token if the credentials are
logged in, they valid. The client-side code on the /login page will
should be sent an take this access token and append it to the user’s
authentication token browser’s local storage, which allows for requests
which they can store in the future to access the user’s access token.
in local storage — this
will be used as User feedback
authorization for all “Well designed.”
future requests.
3) Users should be able to On the /profile page, users can edit their password

or choose from a range of different profile pictures.
This will call the POST /profile endpoint on the
server, which will run an UPDATE statement on the
SQLlite server, updating the database.

User feedback

“The option to change your profile picture adds a
sense of freedom! However, it’s not made clear that
clicking the title of the site returns to the homepage
so | was stuck there for a while.”

Source code available @ github.com/0xShay/SupportMe

Page |38

4) Users should be able to Users can log out from the homepage by clicking
log out of their account, the “log out” button at any time. This will trigger a
clearing the authentication function on the client-side, removing the access
token from their local token from the user’s local storage and displaying a
storage and displaying a “logged out” message, followed by a redirection to
success message. the /login page.
User feedback
“I like how it immediately redirects me back to the
login page, and it confirms when | have logged
out.”
5) Customers need to be Customers can create a new ticket at the
able to open support /ticket/new page, which will call the /ticket/new
tickets. POST endpoint on the server with information
about the ticket to be created. The server will
a) Once a support respond with an error, or a ticket ID. By going to
ticket has been /ticket/:ticketID the user can view their specific
opened they should ticket’s details and messages. At that page, they
be able to access it can also send messages in the input box, which will
at a specific link. POST to the /ticket endpoint with the message data
to be sent. The endpoint will append the message
b) They must be able to data to the database.
send messages in
the support ticket. User feedback
“The unique URL allows for easy accessibility to the
ticket, and clients can bookmark the link and come
back to check for updates.”
6) Assistants need to be Assistants can see a list of open tickets on the

able to read open support
tickets.

a) They must be able to
send messages in
the support ticket.

b) They must also be
able to mark a
support ticket as
“closed” or “open”.

/home page, and can send messages in the ticket at
any time through the /ticket/:ticketID page, even if
they haven’t claimed the ticket for themselves.
Furthermore, assistants can use either the buttons,
or send !close or lopen to mark a ticket as closed or
open.

User feedback

“It’s nice that assistants can easily run commands
to edit the ticket status — it makes it a lot easier for
assistants to make quick changes to a ticket.”

Source code available @ github.com/0xShay/SupportMe

Page |39

STRUCTURE

The Python Flask server uses the sglite3 library to interact with the database file stored
in the project folder.

The Flask web server also has multiple REST APl endpoints which can be used to interact
with the system, allowing for tickets to be created, closed, profiles to be updated, and
information about tickets, users, and messages to be received (not exhaustive).

As a result, the additional endpoints which provide a default user interface can easily
interact with the RESTful endpoints in order to allow for the end-user to easily interact with
the system.

Furthermore, anyone can create a user interface and hook up user inputs and outputs to the
RESTful endpoints in order to customise or tailor the user experience depending on who
their audience is.

This will be beneficial to the studio as they can put their logo on the website or redevelop it
to match the theme of their existing website to maintain a level of brand consistency. These
pages will interact directly with the RESTful endpoints, in order to allow users to interact
with the Support Ticket system through a default standardized interface.

POTENTIAL IMPROVEMENTS

If I had more time and resources, here are some features that | would implement to further
improve the system:

RATE LIMITS

Currently there is no rate limiter implemented — adding a rate limit would help protect the
server from Distributed-Denial-of-Service (DDoS) attacks. One way | could implement this is
keeping account of requests from individual IP addresses, and if an IP address makes too
many requests in a set time period, any following requests made within that time period
would be ignored and the server would return a “429 Too Many Requests” HTTP error code.

Not only would | implement rate limits for the number of requests that can be made, but a
further rate limit could be implemented to prevent users from opening too many tickets. A
“maximum ticket limit” could be implemented, where users can only open up to a certain
number of tickets, and if they try to open any more before their existing ones are closed,
they will be returned an error.

Source code available @ github.com/0xShay/SupportMe

Page | 40

NOTIFICATIONS & AUTO-REFRESHING TICKETS

One criticism that was put forward by the client was that when a new message is sentin a
ticket, the ticket page must be refreshed to see any updates. Furthermore, from the
homepage, if a user has a lot of tickets, they may want to quickly see which tickets have had
any updates since they were last online.

Whilst the system was not intended to be a live-chat service, having a loop running in the
background on the client-side, getting all tickets, and refreshing ticket pages when new
messages are sent would provide end-users with the illusion of a “live chat” system, where
they get updates as soon as they’re sent.

In terms of a notification system, whenever a user fetches messages in a ticket, the
timestamp could be saved. A “last action” timestamp could also be stored in each ticket’s
metadata. When the user fetches a list of their open tickets the next time they log in, if a
message was sent in any of their tickets (last action timestamp > user’s last message fetch
timestamp), a small red dot could appear suggesting that there are unread messages in the
ticket.

ADMIN PANEL

Currently, to promote a customer account to an assistant account, the server admin must
run a command-line tool and input the ID of the assistant account. If the server admin is
inexperienced, they may struggle to promote user accounts — having a page dedicated for
admins would allow for accounts to be easily managed from a central point, with a more
user-friendly interface.

To implement this, | would need to create a new account type - ACCOUNT_TYPE_ADMIN (3)
— which would have exclusive access to a newly-created page (/admin-dashboard). On this
page they would be able to see a list of registered users and perform actions on behalf of
registered user accounts. This would allow for spam users’ accounts to be terminated and
inappropriate usernames or profile pictures to be monitored and controlled.

ACCOUNT SECURITY

A final improvement | would make is the addition of an email verification system, to prevent
multiple accounts being made by the same person. This would entail sending a verification
code to the inputted email when a user registers a new account, and having a timer for the
user to input the code into the website in order to successfully create their account.

Source code available @ github.com/0xShay/SupportMe

Page |41

Email verification would also allow for users to recover lost accounts if they lost their
password — a /forgot-password page could be created where users input their email or
username, and they are sent an email with a password reset link.

Another way to improve account security is implementing two-factor authentication. When
users register, a 2FA key could be generated and stored in the User database, and when the
user registers for the first time, they can see this 2FA key. Using a 2FA authenticator app on
another device, the user can generate unique codes every 30 seconds, so even if their
password is compromised, they also need their 2FA code to log in and verify themselves.

Source code available @ github.com/0xShay/SupportMe

Page | 42

SOURCE CODE

MAIN SERVER LOGIC

Appendix A - server.py

import json, sqlite3, time, jwt, random, re

from flask import Flask, redirect, url for, request, send from directory,
render template

JWT SECRET KEY = "".join([random.choice(["O", ™"1", "2", "3", "4",6 "5", 6 "g",
"'7"’ "8"’ "9"’ "A"’ "B"’ "c"’ "D", IIE", IIFII]) for i in range (64)])

start of global constants

ACCOUNT TYPE CUSTOMER = 1
ACCOUNT TYPE ASSISTANT = 2

TICKET STATUS OPEN = 1
TICKET STATUS CLOSED = 2

SYSTEM USER ID = 0
end of global constants
App = Flask(
__name
static url path='"",

static folder='static',
template folder='templates'

start of server-side methods
def create_user (username, email, password):

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

cursor.execute ("SELECT * FROM User WHERE username = ?", [username

if len(cursor.fetchall()) != O0:
return (False, "That username is already taken.")

cursor.execute ("SELECT * FROM User WHERE email = 2", [email 1)
if len(cursor.fetchall()) != O:
return (False, "A user is already registered with that email
address.™)

Source code available @ github.com/0xShay/SupportMe

Page |43

cursor.execute (
"INSERT INTO User (username, password, createdAt, accountType,
profileIcon, email) VALUES (2, 2, 2, 2, 2, 2)",

4 4 -7 4

[username, password, int (time.time()), ACCOUNT TYPE CUSTOMER,
f"/profile-icons/{random.choice (['blue', 'green', 'purple', 'red'])}.png",
email]

)
user id = cursor.lastrowid

return (True, user_ id)
def login user (username, password):

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

cursor.execute ("SELECT userID, password, accountType FROM User
WHERE username = 2", [username])
user list = cursor.fetchall()
if len(user list) ==
return (False, "A user with the supplied username and password
was not found.")

_user id, password, _account type = user 1list[O0]
if password == password:
access_token = generate access_token(user id, _account type)

return (True, access_ token)
else:

return (False, "A user with the supplied username and password
was not found.")
def get profile(user id):
with sglite3.connect ("data.db") as connection:

cursor = connection.cursor ()

cursor.execute ("SELECT username, createdAt, accountType,

profileIcon FROM User WHERE userID = 2", [user id])
user list = cursor.fetchall()
if len(user list) == 0:

return None

_username, created at, _account type, profile icon = user 1list[O0]
return {

"user id": user id,

"username": username,

"created at": created at,

"account type": account type,

"profile icon": profile icon

def generate_access_token (user id, account type):
access token = jwt.encode ({

Source code available @ github.com/0xShay/SupportMe

Page | 44

"user id": user id,
"account type": account type,
"exp": int (time.time()) + 86400

}, JWT_SECRET KEY, algorithm="HS256")
return access_token

def verify access_token (access token):
try:
d at = jwt.decode (access_token.split (" ") [1l], JWT_SECRET KEY,
algorithms=["HS256"])
if d at["exp"] < time.time():
return None
else:
return d at
except:
return None

def is_valid_ username (username) :
if not username.isalnum() :
return False, "Username can only contain alphanumeric characters."
elif len (username) > 16:
return False, "Username cannot be more than 16 characters."
return True, True

def is valid password (password) :
if len(password) < 8:
return False, "Password must be at least 8 characters."
elif len(password) > 32:
return False, "Password cannot be more than 32 characters."
return True, True

def is valid email (email):
if re.search('”[a-z0-91+[\. 1?[a-z0-9]+[@]\w+[.]\w{2,63}$"', email):
return True, True
else:
return False, "The provided email was invalid."

def is_valid profile_icon(profile icon):
if profile icon not in [f"/profile-icons/{c}.png" for c in ["blue",
"green", "purple", "red"] 1]:
return False, "Profile icon is invalid."
return True, True

def is valid ticket_title(ticket title):
if not all(x.isalnum() or x.isspace() for x in ticket title):
return False, "Ticket title can only contain spaces and
alphanumeric characters."
elif len(ticket title) < 8:
return False, "Ticket title must be at least 8 characters - be
descriptive."
elif len(ticket title) > 64:
return False, "Ticket title cannot be more than 64 characters -
keep it concise."
return True, True

def is_valid message (message) :

Source code available @ github.com/0xShay/SupportMe

Page |45

if len(message) < 8 and not message.startswith(™!"):
return False, "Message length must be at least 8 characters - be

descriptive."
elif len(message) > 512:
return False, "Message length cannot be more than 512 characters."

return True, True

end of server-side methods

start of flask endpoints

@App.route('/', methods=['GET'])
@App.route (' /home', methods=["'GET'])
def home_ req() :
if request.method == 'GET':
return (render template('home.html'), 200)

@App.route ('/register', methods=['GET', 'POST'])
def register req():

if request.method == 'GET':

return (render template('register.html'), 200)

elif request.method == '"POST':
try:
registration data = json.loads(request.get data())
if list(registration data.keys()) != ["username", "email",
"password"]:
return ({ "error": "The request failed." }, 400)
if "" in list(registration data.values()):
return ({ "error": "Please don't leave any blank fields."
}, 400)

_valid username =
is valid username (registration data["username"])
if not valid username[0]:
return ({ "error": valid username[l] }, 400)

_valid password =
is valid password(registration data["password"])
if not valid password[0]:

return ({ "error": valid password[l] 1}, 400)
~valid email = is valid email (registration data["email"])
if not wvalid emaill[O]:
return ({ "error": wvalid email[l] }, 400)
cu_success, cu _res = create user(registration data["username"],

registration data["email"], registration data["password"])
if cu success:

Source code available @ github.com/0xShay/SupportMe

Page | 46

return ({ "access token": generate access_ token(cu res,
ACCOUNT TYPE CUSTOMER) }, 200)

else:
return ({ "error": cu res }, 400)
except:
return ({ "error": "Server failed to parse the request." 1},

400)

@App.route('/login', methods=['GET', 'POST'])
def login_req():

if request.method == 'GET':
return (render template('login.html'), 200)

elif request.method == 'POST':
try:

login data = json.loads (request.get data())

if list(login data.keys()) != ["username", "password"]:
return ({ "error": "The request failed." }, 400)

if "" in list(login data.values()):
return ({ "error": "Please don't leave any blank fields."

}, 400)
lu success, lu res = login user (login data["username"],

login data["password"])
if lu success:

return ({ "access token": lu res }, 200)
else:
return ({ "error": lu res }, 400)
except:
return ({ "error": "Server failed to parse the request." },

400)

@App.route ('/get-profile/<int:user id>', methods=['GET'])
def get_profile by user id reqg(user id):
if request.method == 'GET':

auth user =
verify access_ token(request.headers.get ("Authorization"))
if auth user == None:
return ({ "error": "User is not authenticated to make this
request." }, 403)

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()
cursor.execute ("SELECT username, createdAt, accountType,

profileIcon FROM User WHERE userID = ?", [user id])
user list = cursor.fetchall()

Source code available @ github.com/0xShay/SupportMe

Page |47

if len(user list) ==
return ({ "error": "User not found." }, 400)

_username, _created at, account type, profile icon =
user 1ist[O0]

return ({ "user": {
"user id": user id,
"username": username,
"created at": created at,
"account type": account type,
"profile icon": profile icon
} }, 200)

@App.route ('/ticket/new', methods=['GET', 'POST'])
def create_ticket_req():
if request.method == 'GET':
return (render template('ticket/new.html'), 200)

elif request.method == 'POST':
try:

auth user =
verify access_token(request.headers.get ("Authorization"))

if auth user == None or auth user["account type"] !=
ACCOUNT TYPE CUSTOMER:
return ({ "error": "User 1s not authenticated to make this

request." }, 403)

ticket data = json.loads(request.get data())

if list(ticket data.keys()) != ["ticket title", "message"]:
return ({ "error": "The request failed." }, 400)

if "" in list(ticket data.values()):
return ({ "error": "Please don't leave any blank fields."

}, 400)

_valid ticket title =
is valid ticket title(ticket data["ticket title"])
if not wvalid ticket title([0]:

return ({ "error": valid ticket title[1l] }, 400)
~valid message = is valid message (ticket data["message"])
if not valid message[0]:

return ({ "error": valid message[l] }, 400)

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

cursor.execute ("INSERT INTO Ticket (customerID,
assistantID, openedAt, closedAt, title) VALUES (2, 2, 2, 2, 2);", [

auth user["user id"], -1, int(time.time()), -1, ticket data["ticket title"]

1)

Source code available @ github.com/0xShay/SupportMe

Page |48

ticket id = cursor.lastrowid

cursor.execute ("INSERT INTO Message (ticketID, authorID,
body, sentAt) VALUES (2, 2, 2, ?);", [ticket id, auth user["user id"],
ticket data["message"], int(time.time()) 1)

message_id = cursor.lastrowid

return ({
"ticket id": ticket id,
"message id": message_ id
}, 200)

except:
return ({ "error": "Server failed to parse the request." },
400)

@App.route ('/get-ticket/<int:ticket id>', methods=['GET'])
def ticket json by id req(ticket id):
if request.method == 'GET':

auth user =
verify access_ token(request.headers.get ("Authorization"))
if auth user == None:
return ({ "error": "User is not authenticated to make this
request." }, 403)

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

cursor.execute ("SELECT customerID, assistantID, openedAt,
closedAt, title FROM Ticket WHERE ticketID = 2;", [ticket id])

ticket list = cursor.fetchall()
if len(ticket list) ==
return ({ "error": "Ticket with given ID was not found in

the database." }, 404)

_customer id, assistant id, opened at, closed at, title =
ticket 1list[0]

if auth user["user id"] not in [customer id] and
auth user["account type"] != ACCOUNT TYPE ASSISTANT:
return ({ "error": "User is not authenticated to make this
request." }, 403)

return ({
"ticket data": {

"ticket id": ticket id,
"customer id": customer id,
"assistant id": assistant id,
"opened at": opened at,
"closed at": closed at,
"title": title

}, 200)

Source code available @ github.com/0xShay/SupportMe

Page |49

@App.route ('/ticket/<int:ticket id>', methods=['GET', 'POST'])
def ticket by id req(ticket id):
if request.method == 'GET':
return (render template('ticket/ticket.html', ticket id=ticket id),
200)

elif request.method == 'POST':
try:

auth user =
verify access token(request.headers.get ("Authorization"))
if auth user == None:
return ({ "error": "User is not authenticated to make this
request." }, 403)

message data = Jjson.loads (request.get data())
if list (message data.keys()) != ["message"]:
return ({ "error": "The request failed." }, 400)
if "" in list (message data.values()):
return ({ "error": "Please don't leave any blank fields."
}, 400)
~valid message = is _valid message (message data["message"])
if not valid message[0]:
return ({ "error": valid message[l] }, 400)

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

cursor.execute ("SELECT customerID, assistantID, closedAt
FROM Ticket WHERE ticketID = 2;", [ticket_id 1)

ticket list = cursor.fetchall()
if len(ticket list) ==
return ({ "error": "Ticket with given ID was not found

in the database." }, 404)
_customer id, assistant id, closed at = ticket 1ist[O]

if auth user["user id"] not in [customer id] and
auth user["account type"] != ACCOUNT TYPE ASSISTANT:
return ({ "error": "User 1s not authenticated to make
this request." }, 403)

user profile = get profile(auth user["user id"])
if message data["message"] == "!close":
cursor.execute ("UPDATE Ticket SET closedAt = ? WHERE
(ticketID = ?);", [int(time.time()), ticket id])
cursor.execute ("INSERT INTO Message (ticketID,
authorID, body, sentAt) VALUES (2, 2, ?, ?);", [ticket id, SYSTEM USER 1ID,

Source code available @ github.com/0xShay/SupportMe

Page |50

f"This ticket has been closed by {user profile['username']} (ID:

{auth user['user id']}).", int(time.time()) 1)
elif message data["message"] == "l!open":
cursor.execute ("UPDATE Ticket SET closedAt = -1 WHERE

(ticketID = ?);", [ticket id 1)

cursor.execute ("INSERT INTO Message (ticketID,
authorID, body, sentAt) VALUES (?, ?, ?, ?);", [ticket id, SYSTEM USER ID,
f"This ticket has been reopened by {user profile['username']} (ID:

{auth user['user id']}).", int(time.time()) 1)
elif message data["message"] == "!claim" and
auth user["account type"] == ACCOUNT TYPE ASSISTANT:

cursor.execute ("UPDATE Ticket SET assistantID = ?,
closedAt = ? WHERE (ticketID = ?);", [auth user["user id"], -1, ticket id
1)
if closed at != -1:
cursor.execute ("INSERT INTO Message (ticketID,
authorID, body, sentAt) VALUES (2, 2, 2, ?);", [ticket id, SYSTEM USER ID,
f"This ticket has been claimed and reopened by {user profile['username']}
(ID: {auth user['user id']}).", int(time.time())])
else:
cursor.execute ("INSERT INTO Message (ticketID,
authorID, body, sentAt) VALUES (2, 2, 2, ?);", [ticket id, SYSTEM USER 1ID,
f"This ticket has been claimed by {user profile['username']} (ID:
{auth user['user id']}).", int(time.time()) 1)
else:
if closed at != -1:
cursor.execute ("INSERT INTO Message (ticketID,
authorID, body, sentAt) VALUES (?, ?, ?, ?);", [ticket id, SYSTEM USER ID,
f"This ticket has been reopened by {user profile['username']} (ID:

{auth user['user id']}).", int(time.time())-1])
cursor.execute ("UPDATE Ticket SET closedAt = ?
WHERE (ticketID = ?);", [-1, ticket id 1)

cursor.execute ("INSERT INTO Message (ticketID,
authorID, body, sentAt) VALUES (?, 2, 2, ?);", [ticket id,
auth user["user id"], message data["message"], int(time.time())+1l])

message id = cursor.lastrowid

return ({
"ticket id": ticket id,
"message id": message_ id
}, 200)

except:
return ({ "error": "Server failed to parse the request." },
400)

@App.route ('/get-open-tickets/<int:user id>', methods=['GET'])
def get open_tickets_ by user id req(user id):
if request.method == 'GET':

auth user =
verify access_ token(request.headers.get ("Authorization"))
if auth user == None or auth user["user id"] != user id:
return ({ "error": "User is not authenticated to make this
request." }, 403)

Source code available @ github.com/0xShay/SupportMe

Page |51

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

cursor.execute ("SELECT * FROM User WHERE userID = ?2;", [
user id 1])

if len(cursor.fetchall()) ==
return ({ "error": "User with given ID was not found in the
database." }, 404)

cursor.execute ("SELECT ticketID, customerID, assistantID,
openedAt, closedAt, title FROM Ticket WHERE (customerID = ? OR assistantID

= ?) AND closedAt = -1 ORDER BY openedAt ASC;", [user id, user id])
ticket list = cursor.fetchall()
response = []

for t in ticket list:
_ticket id, customer id, assistant id, opened at,
_closed at, title =t
response.append ({

"ticket id": ticket id,
"customer id": customer id,
"assistant id": assistant id,
"opened at": opened at,
"closed at": closed at,
"title": title

})

return ({
"tickets": response
}, 200)

@App.route ('/get-closed-tickets/<int:user id>', methods=['GET'])
def get closed tickets by user id req(user id):
if request.method == 'GET':

auth user =
verify access token(request.headers.get ("Authorization"))
if auth user == None or auth user["user id"] != user id:
return ({ "error": "User is not authenticated to make this
request." }, 403)

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

cursor.execute ("SELECT * FROM User WHERE userID = ?2;", [
user id 1)

if len(cursor.fetchall()) ==

return ({ "error": "User with given ID was not found in the
database.”™ }, 404)

Source code available @ github.com/0xShay/SupportMe

Page |52

cursor.execute ("SELECT ticketID, customerID, assistantID,
openedAt, closedAt, title FROM Ticket WHERE (customerID = ? OR assistantID

= ?) AND closedAt != -1 ORDER BY closedAt DESC;", [user_ id, user_ id])
ticket list = cursor.fetchall()
response = []

for t in ticket list:
_ticket id, customer id, assistant id, opened at,
_closed at, title =t
response.append ({

"ticket id": ticket id,
"customer id": customer id,
"assistant id": assistant id,
"opened at": opened at,
"closed at": closed at,
"title": title

})

return ({
"tickets": response
}, 200)

@App.route (' /get-unclaimed-tickets', methods=['GET'])
def get_unclaimed_tickets_req():
if request.method == 'GET':

auth user =
verify access_token(request.headers.get ("Authorization"))

if auth user == None or auth user["account type"] !=
ACCOUNT TYPE ASSISTANT:
return ({ "error": "User is not authenticated to make this

request." }, 403)
with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

cursor.execute ("SELECT ticketID, customerID, assistantID,

openedAt, closedAt, title FROM Ticket WHERE assistantID = -1 ORDER BY
openedAt ASC;")

ticket list = cursor.fetchall()

response = []

for £ in ticket list:
_ticket id, customer id, _assistant id, opened at,
_closed at, title =t
response.append ({

"ticket id": ticket id,
"customer id": customer id,
"assistant id": assistant id,
"opened at": opened at,
"closed at": closed at,
"title": title

Source code available @ github.com/0xShay/SupportMe

Page |53

return ({
"tickets": response
}, 200)

@App.route ('/get-messages/<int:ticket id>', methods=['GET'])
def get messages by ticket id req(ticket id):
if request.method == 'GET':

auth user =
verify access_ token(request.headers.get ("Authorization"))
if auth user == None:
return ({ "error": "User is not authenticated to make this
request." }, 403)

with sglite3.connect ("data.db") as connection:
cursor = connection.cursor ()

cursor.execute ("SELECT customerID, assistantID FROM Ticket
WHERE ticketID = 2;", [ticket id])

ticket list = cursor.fetchall()
if len(ticket list) ==
return ({ "error": "Ticket with given ID was not found in
the database." }, 404)

customer id, assistant id = ticket 1list[O0]

if auth user["user id"] not in [customer id] and
auth user["account type"] != ACCOUNT TYPE ASSISTANT:
return ({ "error": "User 1s not authenticated to make this
request." }, 403)

cursor.execute ("SELECT messagelD, authorID, body, sentAt FROM

Message WHERE ticketID = ? ORDER BY sentAt DESC;", [ticket id])
message list = cursor.fetchall()
response = []

for m in message list:
_message_id, _author id, body, _sent at =m
response.append ({

"message id": message id,
"author id": _author id,
"body": _body,
"sent at": sent at
})
return ({
"ticket id": ticket id,
"message list": response
}, 200)
@App.route ('/profile', methods=['GET', 'POST'])

def profile req():

Source code available @ github.com/0xShay/SupportMe

Page |54

if request.method == 'GET':

return (render template('profile.html'), 200)
elif request.method == 'POST':

try:

auth user =
verify access_token(request.headers.get ("Authorization"))
if auth user == None:

return ({ "error":

"User is not authenticated to make this
request." }, 403)

profile data = json.loads(request.get data())

if list(profile data.keys()) != ["new password",
"old password", "profile icon"]:

return ({ "error": "The request failed." }, 400)

if profile data["new password"] == "":
profile data["new password"] = profile data["old password"]

if "" in list(profile data.values()):

return ({ "error": "Please don't leave any blank fields."

}, 400)

with sglite3.connect ("data.db") as connection:

cursor = connection.cursor ()

cursor.execute ("SELECT password FROM User WHERE userID =

?;", [auth user["user id"]])

user list = cursor.fetchall()
if len(user list) == 0:
return ({ "error":

"User with given ID was not found in
the database." }, 404)

if user 1ist[0][0] != profile data["old password"]:

return ({ "error": "Incorrect password was provided."

}, 403)

_valid password =
is valid password(profile data["new password"])
if not valid password[0]:
return ({ "error": valid password[1l] }, 400)

_valid profile icon =
is _valid profile icon(profile data["profile icon"])
if not valid profile icon[0]:

return ({ "error": valid profile icon[l] }, 400)
cursor.execute ("UPDATE User SET password = ?, profilelcon =
? WHERE (userID = ?)", [profile data["new password"],
profile data["profile icon"], auth user["user id"] 1)

Source code available @ github.com/0xShay/SupportMe

Page |55

return ({ "msg": "Profile has been updated.”™ }, 200)
except:
return ({ "error": "Server failed to parse the request." },
400)
end of flask endpoints

if name == " main_ ":
App.run (host="0.0.0.0")

Appendix B - tools/changeAccountType.py
import sqglite3
user id = int (input ("Enter the user ID of the account: "))

)
account type = int(input ("Enter an account type to set (1 = customer, 2
assistant): "))

with sglite3.connect("../data.db") as connection:

try:
cursor = connection.cursor ()
cursor.execute ("UPDATE User SET accountType = ? WHERE userID = ?2;",
[account type, user id])
if cursor.rowcount ==
print ("User with given ID was not found in the database.
Terminating.")
else:
print (f"User with ID {user id}'s account type has been
successfully updated to {account type}.")

except sglite3.Error as error:
print (error)

CLIENT SCRIPTS

Appendix C - static/src/constants.js

const ACCOUNT TYPE CUSTOMER = 1
const ACCOUNT TYPE ASSISTANT = 2

const TICKET STATUS OPEN = 1
const TICKET STATUS CLOSED = 2

const SYSTEM USER ID = 0

Appendix D - static/src/ticketTools.js

Source code available @ github.com/0xShay/SupportMe

Page |56

async function openTicket () {

let ticket title input = document.getElementById("ticket title input");
let message input = document.getElementById("message input");

const res = await (await fetch('/ticket/new', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + localStorage.getItem("access token")
}l
redirect: 'manual',
body: JSON.stringify ({
ticket title: ticket title input.value,
message: message input.value

1)

})) .Json();
if (res["error"] != undefined) {
alert (res["error"]);
} else {
window.location.href = "/ticket/" + res["ticket id"];

}i

async function getTicket (ticket id) {

const res = await (await fetch('/get-ticket/' + ticket id, {
method: 'GET',
headers: {

'Content-Type': 'application/json',
'Authorization': 'Bearer ' + localStorage.getItem("access token")
}
1)) .json();
if (res["error"] != undefined) ({
alert (res["error"]);
return false;
} else {

return res;

b

async function getOpenTicketsByUserID (user id) {

const res = await (await fetch('/get-open-tickets/' + user id, {
method: 'GET',
headers: {

'Content-Type': 'application/json',
'Authorization': 'Bearer ' + localStorage.getItem("access token")
}
1)) .gson();

Source code available @ github.com/0xShay/SupportMe

Page |57

if (res["error"] != undefined) {
alert (res["error"]);
return [];

} else {

return res(["tickets"];

i

async function getClosedTicketsByUserID(user id) {

const res = await (await fetch('/get-closed-tickets/' + user id, {
method: 'GET',
headers: {
'Content-Type': 'application/Jjson',
'Authorization': 'Bearer ' + localStorage.getItem("access token")
}
1)) .json();

if (res["error"] != undefined) {
alert (res["error"]);
return [];

} else {
return res(["tickets"];

b

async function getUnclaimedTickets () {

const res = await (await fetch('/get-unclaimed-tickets', {
method: 'GET',
headers: {

'Content-Type': 'application/Jjson',
'Authorization': 'Bearer ' + localStorage.getItem("access token")
}
1)) .gson();
if (res["error"] != undefined) ({
alert (res["error"]);
return [];
} else {

return res(["tickets"];

}i

async function
sendMessage (message input=document.getElementById("message input") .value) {

const res = await (await fetch('/ticket/' + ticketID, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' +
localStorage.getItem("access token")

Source code available @ github.com/0xShay/SupportMe

Page |58

1y
body: JSON.stringify ({
message: message input

})

1)) .Json();

if (res["error"] != undefined) {
alert (res["error"]);
return [];

} else {

window.location.reload () ;
return res;

async function getMessages (ticket id) {

const res = await (await fetch('/get-messages/' + ticket id, {
method: 'GET',
headers: {

'Content-Type': 'application/json',
'Authorization': 'Bearer ' + localStorage.getItem("access token")
}
1)) .Json();
if (res["error"] != undefined) {
alert (res["error"]);
return [];
} else {

return res["message list"];

i

Appendix E - static/src/usertools.js

const getDecodedAccessToken = () => {
return localStorage.getItem("access token") != null ?
jwt decode (localStorage.getItem("access token")) : null;

}

function getLoggedInUser () {
let d at = getDecodedAccessToken() ;
if (d _at == null) return null;
if (d at["exp"] < (Date.now() / 1000)) {
localStorage.removeltem("access token");
return null
}i

return d at;

async function register () {

Source code available @ github.com/0xShay/SupportMe

Page |59

let username input = document.getElementById("username input");
let email input = document.getElementById("email input");

let password input = document.getElementById("password input");
let passwordc_input = document.getElementById("passwordc input");

if (password input.value != passwordc input.value) return
alert ("Passwords do not match.")

const res = await (await fetch('/register', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
}I
redirect: 'manual',
body: JSON.stringify ({
username: username input.value,
email: email input.value,
password: password input.value

})

})) .json();

if (res["error"] != undefined) {
alert (res["error"]);

} else {
localStorage.setItem("access token", res["access token"]);
window.location.href = "/home";

i

async function login () {

let username input = document.getElementById("username input");
let password input document.getElementById ("password input");

const res = await (await fetch('/login', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
}I
redirect: 'manual',
body: JSON.stringify ({
username: username input.value,
password: password input.value

})

})) .json();

if (res["error"] != undefined) {
alert (res["error"]);

} else {
localStorage.setItem("access token", res["access token"]);
window.location.href = "/home";

b

Source code available @ github.com/0xShay/SupportMe

Page | 60

async function logout () {

localStorage.removeltem("access token");
alert ("Successfully logged out.");
window.location.href = "/login";

async function getProfile(user id) {

const res = await (await fetch('/get-profile/' + user id, {
method: 'GET',
headers: {

'Content-Type': 'application/json',
'Authorization': 'Bearer ' + localStorage.getItem("access token")
}
1)) .gson();
if (res["error"] != undefined) {
alert (res["error"]);
return false;
} else {

return res|["user"];

}i

async function updateProfile () {

let new password input = document.getElementById("new password input");

let new passwordc input =
document.getElementById("new passwordc input");

let old password input = document.getElementById("old password input");

let profile icon select =
document.getElementById("profile icon select");

if (new password input.value != new passwordc input.value) return
alert ("Passwords do not match.");

if (old password input.value == "") return alert("Old password is
needed to confirm changes.");

const res = await (await fetch('/profile', {

method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + localStorage.getlItem("access token")
by
redirect: 'manual',
body: JSON.stringify ({
new _password: new password input.value,
old password: old password input.value,
profile icon: profile icon select.value
})
1)) .Json();

if (res["error"] != undefined) {

Source code available @ github.com/0xShay/SupportMe

Page |61

alert (res["error"]);

} else {
alert ("Profile updated.");
window.location.reload() ;

i

Appendix F - static/src/jwt-decode.js (sourced from GitHub)

// CODE IS FROM https://github.com/auth0/jwt-decode

(function (factory) {

typeof define === 'function' && define.amd ? define(factory)
factory (),

} ((function

/*k*k

() { 'use strict';

* The code was extracted from:
* https://github.com/davidchambers/Base64.js

*/

var chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/=";

function InvalidCharacterError (message) {
this.message = message;

InvalidCharacterError.prototype = new Error();
InvalidCharacterError.prototype.name = "InvalidCharacterError";

function polyfill (input) {

var str = String(input) .replace(/=+S$/, "");
if (str.length $ 4 == 1) {

throw new InvalidCharacterError (

"'atob' failed: The string to be decoded is not correctly
encoded."

);
}
for (

ascii wvalue;

// initialize result and counters

var bc = 0, bs, buffer, idx = 0, output = "";

// get next character

(buffer = str.charAt (idx++));

// character found in table? initialize bit storage and add its

~buffer &&
((bs = bc $ 4 ? bs * 64 + buffer : buffer),
// and if not first of each 4 characters,
// convert the first 8 bits to one ascii character
bc++ % 4) ?
(output += String.fromCharCode (255 & (bs >> ((-2 * bc) & 6))))

Source code available @ github.com/0xShay/SupportMe

Page | 62

0

// try to find character in table (0-63, not found => -1)
buffer = chars.indexOf (buffer);

}

return output;

var atob = (typeof window !== "undefined" &&
window.atob &&
window.atob.bind (window)) ||

polyfill;

function b64DecodeUnicode (str) {
return decodeURIComponent (
atob(str) .replace(/(.)/g, function(m, p) {
var code = p.charCodeAt (0).toString(1l6) .toUpperCase() ;
if (code.length < 2) {
code = "0" + code;
}
return "$" + code;
})
)i

function base64 url decode(str) {
var output = str.replace(/-/g, "+").replace(/ /g, "/");
switch (output.length % 4) {
case 0:
break;
case 2:
output += "==";
break;
case 3:
output += "=";
break;
default:
throw "Illegal base64url string!";

try {

return b64DecodeUnicode (output) ;
} catch (err) {

return atob (output);

function InvalidTokenError (message) {
this.message = message;

InvalidTokenError.prototype = new Error();
InvalidTokenError.prototype.name = "InvalidTokenError";

function jwtDecode (token, options) {
if (typeof token !== "string") ({

Source code available @ github.com/0xShay/SupportMe

Page | 63

throw new InvalidTokenError ("Invalid token specified");

options = options || {};
var pos = options.header === true ? 0 : 1;
try |
return JSON.parse (base64 url decode (token.split(".") [pos]));
} catch (e) {
throw new InvalidTokenError ("Invalid token specified: " +
e.message) ;
}
}
/*
* Expose the function on the window object
*/

//use amd or just through the window object.
if (window) {
if (typeof window.define == "function" && window.define.amd) {
window.define ("jwt decode", function() {
return jwtDecode;
1)
} else if (window) {
window.jwt decode = jwtDecode;

1))
//# sourceMappingURL=jwt-decode.js.map

STATIC CLIENT FILES

Appendix G - templates/base.html

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-
scale=1.0">

<title>SupportMe</title>

<link rel="stylesheet" href="/style.css">
<link rel="icon" href="/icon.png">

</head>

<body>

Source code available @ github.com/0xShay/SupportMe

Page | 64

<p id="loggedInMessage">...</p>

<h1>¢> SupportMe £k</hl>

<script src="/src/constants.js"></script>
<script src="/src/jwt-decode.js"></script>
<script src="/src/userTools.]js"></script>
<script src="/src/ticketTools.js"></script>

<script>

const currentUser = getloggedInUser();

if (currentUser != null) {
getProfile (currentUser["user id"]) .then(profile => {

document.getElementById ("loggedInMessage") .innerText
"Logged in: " + profile["username"];

}):

} else {
document.getElementById ("loggedInMessage") .innerText = "You

are not logged in.";
i
</script>
{% block content %} {% endblock %}

</body>

</html>

Appendix H - templates/home.html

{% extends 'base.html' %}

{%$ block content %}
<h2>Home</h2>

<button id="open ticket button">Open a support

ticket</button>

<button>Edit profile</button>
<button onclick=logout () >Log out</button>
<section>
<h3>0Open tickets</h3>

<ul id="open tickets list">

</section>

Source code available @ github.com/0xShay/SupportMe

Page | 65

<section id="claimable tickets">
<h3>Claimable tickets</h3>
<ul id="unclaimed tickets list">
</section>
<section>
<h3>Closed tickets</h3>
<ul id="closed tickets list">
</section>

<script>
if (currentUser == null) window.location.href = "/login";

const openTicketsList =
document.getElementById ("open tickets list")

const closedTicketsList =
document.getElementById("closed tickets list")

const unclaimedTicketsList =
document.getElementById ("unclaimed tickets list")

getOpenTicketsByUserID (currentUser["user id"]) .then (openTickets =>

if (openTickets.length == 0) openTicketsList.innerHTML = "<i>No
tickets to show.</i>"
for (t of openTickets) {
let a = document.createElement ("a");

_a.innerText = "#" + t["ticket id"] + " - " + t["title"];
_a.href = "/ticket/" + t["ticket id"];
let 1i = document.createElement ("1i");

_li.appendChild(a);
openTicketsList.appendChild(11i);
b7

)i

getClosedTicketsByUserID (currentUser["user id"]) .then (closedTickets
=> |
if (closedTickets.length == 0) closedTicketsList.innerHTML =
"<i>No tickets to show.</i>"
for (t of closedTickets) {
let a = document.createElement ("a");

_a.innerText = "#" + t["ticket id"] + " - " + t["title"];
_a.href = "/ticket/" + t["ticket id"];
let 1i = document.createElement ("1i");

_li.appendChild(_a);
closedTicketsList.appendChild(1i);
b

}) s

if (currentUser(["account type"] == ACCOUNT TYPE CUSTOMER) {

Source code available @ github.com/0xShay/SupportMe

Page | 66

document.getElementById("claimable tickets").style.display =

"none";
} else if (currentUser["account type"] == ACCOUNT TYPE ASSISTANT) ({
document.getElementById("claimable tickets").style.display =
"block";
document.getElementById("open ticket button").style.display =
"none";
getUnclaimedTickets () .then (unclaimedTickets => {
if (unclaimedTickets.length == 0)
unclaimedTicketsList.innerHTML = "<i>No tickets to show.</i>"
for (t of unclaimedTickets) {
~a = document.createElement ("a");
_a.innerText = "#" + t["ticket id"] + " - " +
t["title"];
_a.href = "/ticket/" + t["ticket id"];
_1i = document.createElement ("1i");
_li.appendChild(_a);
unclaimedTicketsList.appendChild(1i);
bi
1)
}
</script>

{%$ endblock %}

Appendix | - templates/login.html

{% extends 'base.html' %}

{% block content %}
<h2>Login</h2>

<label for="username">Username</label>

<input type="text" id="username input" name="username" />

<label for="password">Password</label>

<input type="password" id="password input" name="password" />

<button type="submit" onclick="login ()">Login</button>

Don't have an account? Click here to sign up!

Source code available @ github.com/0xShay/SupportMe

Page | 67

<script>
if (currentUser != null) window.location.href = "/home";
</script>
{%$ endblock %}

Appendix J - templates/profile.html

{% extends 'base.html' %}

{% block content %}
<h2>Profile</h2>

<label for="user id">Your user ID</label>

<input type="text" id="user id input" name="user id" disabled />

<label for="username">Your username (cannot be changed)</label>

<input type="text" id="username input" name="username" disabled />

<label for="new password">New password</label>

<input type="password" id="new password input" name="new password" />

<label for="new passwordc">Confirm new password</label>

<input type="password" id="new passwordc_ input" name="new passwordc" />

<label for="old password">0ld password</label>

<input type="password" id="old password input" name="old password" />

<label for="profile icon">Profile picture</label>

<select name="profile icon" id="profile icon select"
oninput="updateProfileIconPreview () ">

<option value="/profile-icons/blue.png">Blue</option>
<option value="/profile-icons/green.png">Green</option>
<option value="/profile-icons/purple.png">Purple</option>
<option value="/profile-icons/red.png">Red</option>

</select>

Source code available @ github.com/0xShay/SupportMe

Page | 68

<button type="submit" onclick="updateProfile ()">Save changes</button>

Don't have an account? Click here to sign up!

<script>
if (currentUser == null) window.location.href = "/login";
getProfile (currentUser["user id"]).then(profile => {
document.getElementById("profile icon").src =

profile["profile icon"];
document.getElementById("profile icon") .width = 150;
document.getElementById("user id input") .value =
profile["user id"];
document.getElementById ("username input").value =
profile["username"];
document.getElementById("profile icon select") .value =
profile["profile icon"];

)i

function updateProfilelIconPreview () {
document.getElementById("profile icon").src =
document.getElementById("profile icon select") .value;
}i
</script>
{%$ endblock %}

Appendix K - templates/register.html

{% extends 'base.html' %}

{% block content %}
<h2>Register</h2>

<label for="username">Username</label>

<input type="text" id="username input" name="username" />

<label for="email">Email</label>

<input type="email" id="email input" name="email" />

<label for="password">Password</label>

<input type="password" id="password input" name="password" />

<label for="passwordc">Confirm Password</label>

<input type="password" id="passwordc input" name="passwordc" />

Source code available @ github.com/0xShay/SupportMe

Page | 69

<button type="submit" onclick="register ()">Register</button>

Already have an account? Click here to log in!
<script>

if (currentUser != null) window.location.href = "/home";

</script>
{% endblock %}

Appendix L - templates/ticket/new.html

{% extends 'base.html' %}

{% block content %}
<h2>0Open a new support ticket</h2>

<label for="ticket title">Ticket Title</label>

<input type="text" id="ticket title input" name="ticket title" />

<label for="message">Ticket Description</label>

<textarea type="text" id="message input" name="message"
rows="10"></textarea>

<pbutton type="submit" onclick="openTicket ()">Open ticket</button>

<script>

if (currentUser == null) window.location.href = "/login";

</script>
{% endblock %}

Appendix M - templates/ticket/ticket.html

{% extends 'base.html' %}
{% block content %}

<h2 id="ticket title">...</h2>
<p id="ticket id">Ticket #{{ ticket id }}</p>

Source code available @ github.com/0xShay/SupportMe

Page |70

<p>

</p>

<p>
...

This ticket has not been claimed

</p>

<label for="message">Send a message:</label>

<textarea type="text" id="message input" name="message"
rows="10"></textarea>

<button id="close ticket btn" type="submit"

onclick="sendMessage ('!close')">Close ticket</button>
<button id="open ticket btn" type="submit"
onclick="sendMessage ('!open')">Reopen ticket</button>

<button id="send message btn" type="submit"
onclick="sendMessage () ">Send</button>

<button id="claim ticket btn" type="submit"
onclick="sendMessage ('!claim')">Claim ticket</button>

<table id="ticket messages"></table>

<script>
if (currentUser == null) window.location.href = "/login";

{1

const profiles

const ticketID = parseInt("{{ ticket id }}");

getTicket (ticketID) .then (ticket => {
if (ticket != false) {
ticket = ticket["ticket data"];

document.getElementById("ticket title").innerText = "[" +
(ticket["closed at"] == -1 ? "OPEN" : "CLOSED") + "] " + ticket["title"];

document.getElementById ("opened at").innerText = "Opened: "
+ new Date (ticket["opened at"] * 1000).toLocaleString();

if (ticket["closed at"] != -1) {

document.getElementById("closed at").innerText =

"Closed: " + new Date(ticket["closed at"] * 1000).toLocaleString();
document.getElementById("open ticket btn").style.display = "inline";

} else {
document.getElementById("close ticket btn").style.display = "inline";

}i

getProfile (ticket["customer id"]).then(customer => {

Source code available @ github.com/0xShay/SupportMe

Page |71

document.getElementById ("opened by") .innerHTML
"Opened by " + customer["username"] + " (ID: " +
ticket["customer id"] + ")";

1) ;

if (currentUser["account type"] == ACCOUNT TYPE ASSISTANT
&& ticket["assistant id"] != currentUser["user id"]) {
document.getElementById("claim ticket btn").style.display = "inline";

bi

if (ticket["assistant id"] != -1) {

getProfile (ticket["assistant i1d"]).then(assistant => {
document.getElementById("claimed by") .innerHTML

"Claimed by " + assistant["username"] + " (ID: +

ticket["assistant id"] + ")";

1)

b
}s
)

const ticketMessagesTable
document.getElementById("ticket messages");

getMessages (ticketID) .then (async messages => {
for (a_id of messages.map(m => m["author id"])) {
profiles[a_id] await getProfile(a_id); }

for (msg of messages) {
let tr = document.createElement ("tr");
let tdl = document.createElement ("td");
let img = document.createElement ("img");
_img.src = profiles[msg["author id"]]["profile icon"];
_img.width = 150;
let td2 = document.createElement ("td");

let h3 sender document.createElement ("h3") ;

~h3 sender.classList.add("message sender");

~h3 sender.innerText
profiles[msg["author id"]] ["username"];

let p body document.createElement ("p") ;

_p _body.classList.add("message body");

_p_body.innerText msg["body"];

let brl document.createElement ("br") ;

let p sent at document.createElement ("p") ;

_p_sent at.classList.add("message sent at");

_p_sent at.innerText new Date (msg["sent at"]
1000) .toLocaleString () ;

let Dbr2 document.createElement ("br") ;

tdl.appendChild(img) ;

*

_td2.appendChild(_h3 sender);
_td2.appendChild(_p body) ;
_td2.appendChild(brl);
_td2.appendChild(p sent at);
td2.appendChild(br2);

:tr.appendchild(itdl);
_tr.appendChild(td2);

ticketMessagesTable.appendChild(tr);

Source code available @ github.com/0xShay/SupportMe

}s;
)i

</script>
{%$ endblock %}

Page |72

Appendix N - static/style.css

body {
background-color: rgb (203, 255, 238);

font-family: 'Barlow', 'Gill Sans Nova',

padding: 20px;
text-align: center;

p
margin: 20px 0 0 O;
}
hl {
text-align: center;
font-size: min (8vw, 45px);
margin: 20px 0 O O;
}
h2 {
font-size: 30px;
margin: 20px 0 O O;
}
h3 {

font-size: 25px;
margin: 20px 0 0 O;

p, label, input, button, a, 1i {
font-size: 20px;

}

p#loggedInMessage {
position: absolute;
right: 20px;
top: 10px;

}

p#ticket_id {
margin: 0 0 0 O;
}

ul |
text-align: left;

Source code available @ github.com/0xShay/SupportMe

'Calibri’';

Page |73

input {
width: min (225px, 80%) ;
}

textarea {
width: min (225px, 80%) ;

button {
padding: 10px 30px;
margin: 5px 0 0 O;
}

button#fclose ticket btn, button#fopen ticket btn, buttoniffclaim ticket btn {
display: none;
}

sectionficlaimable_ tickets {
display: none;

}

table#tticket messages tr img {
padding-bottom: 20px;
}

table#tticket messages tr td {
text-align: left;
padding: 0 0 0 20px;
vertical-align: top;

}

table#ticket messages tr td * {
margin: 0;

}

tableftticket messages p.message_sent at {
font-size: 15px
}

@media only screen and (max-width: 600px) {
input {
width: min (200px, 80%) ;
}

Source code available @ github.com/0xShay/SupportMe

Page |74

REFERENCES

i Zendesk. Zendesk Pricing. https://www.zendesk.co.uk/pricing/#everyone (accessed 17/03/2023)

it Internet Engineering Task Force (IETF). JSON Web Token (JWT). https://www.rfc-editor.org/rfc/rfc7519
(published May 2015, accessed 05/02/2023)

i \Virtue Security. Application Penetration Testing — Username Enumeration.
https://www.virtuesecurity.com/kb/username-enumeration/ (accessed 05/02/2023)

v Vaarun Sinha. Why you should never use random module for generating passwords.
https://dev.to/vaarun_sinha/why-you-should-never-use-random-module-for-generating-passwords-38nl (last
updated 07/11/2021, accessed 05/02/2023)

Source code available @ github.com/0xShay/SupportMe

https://www.zendesk.co.uk/pricing/#everyone
https://www.rfc-editor.org/rfc/rfc7519
https://www.virtuesecurity.com/kb/username-enumeration/
https://dev.to/vaarun_sinha/why-you-should-never-use-random-module-for-generating-passwords-38nl

