

Source code available @ github.com/0xShay/SupportMe

SUPPORT TICKET SYSTEM
write-up by Shay Patel

P a g e | 1

Source code available @ github.com/0xShay/SupportMe

TABLE OF CONTENTS

Analysis .. 3

Aim ... 3

Existing Issues .. 3

Existing Solutions ... 3

Objectives... 4

End-User Utility .. 4

Structure .. 5

Design ... 6

Web Server... 6

SQL Layout ... 6

“User” table ... 7

“Ticket” table ... 8

“Message” table... 8

Endpoints ... 9

Server-side endpoints .. 9

Client-side endpoints ...10

Dealing with malformed requests to Flask endpoints ... 11

Connecting to and interacting with the SQLite Database ... 11

Handling user authentication .. 12

Serving dynamic content on the homepage .. 13

Promoting customer accounts to assistant accounts and vice-versa.................................. 13

Technical Build ... 15

Database initialization.. 15

Constants ... 16

Dealing with malformed requests to Flask endpoints ... 17

Connecting to and interacting with the SQLite Database ... 17

Handling user authentication .. 19

Serving dynamic content on the homepage .. 23

Promoting customer accounts to assistant accounts and vice-versa.................................. 24

Testing .. 25

Testing server-side endpoints (back-end) ... 25

P a g e | 2

Source code available @ github.com/0xShay/SupportMe

Testing client-side endpoints (front-end) .. 34

Front-end test plan ..34

Front-end tests ..35

Evaluation .. 37

Success Criteria .. 37

End-User Utility ..37

Structure ..39

Potential Improvements .. 39

Rate Limits ...39

Notifications & auto-refreshing tickets ...40

Admin Panel ...40

Account Security ..40

Source Code ... 42

Main server logic .. 42

Appendix A - server.py ..42

Appendix B - tools/changeAccountType.py ..55

Client scripts ... 55

Appendix C - static/src/constants.js ..55

Appendix D - static/src/ticketTools.js ...55

Appendix E - static/src/usertools.js ..58

Appendix F - static/src/jwt-decode.js (sourced from GitHub) ..61

Static client files ... 63

Appendix G - templates/base.html ...63

Appendix H - templates/home.html ...64

Appendix I - templates/login.html ..66

Appendix J - templates/profile.html ...67

Appendix K - templates/register.html ..68

Appendix L - templates/ticket/new.html ..69

Appendix M - templates/ticket/ticket.html ..69

Appendix N - static/style.css ...72

References ... 74

P a g e | 3

Source code available @ github.com/0xShay/SupportMe

ANALYSIS

AIM

My sister works at a dance studio and often has to deal with many enquiries and issues.

Usually, people raise their issues via a telephone call or by email.

The development of a web-based support ticket system would provide a central service

which users can use to submit issues, and will also allow for assistants to quickly see

unclaimed or unanswered tickets and respond to them promptly.

EXISTING ISSUES

Besides using phone calls and email replies, another existing solution for clients to be able

to raise concerns and ask questions is a live-chat service, usually embedded into the corner

of a website.

After discussions with assistants currently working at the studio, the following issues have

arisen:

“As there are multiple people working in the office at different times,
we frequently miss each other’s messages and have to fill each other

in a lot, taking up lots of precious time.”

Phone calls can often lead to miscommunication between both parties, and emails can get

easily buried deep into a company’s inbox, leaving issues unsolved for large periods of time.

A ticket system would allow for both customers and assistants to respond when they’re

ready to as well as preserving the state of the situation.

“At the studio we struggle to track inquiries and requests from
students and clients and information often gets mixed up between

those requesting help.”

Allowing for historical ticket messages to be viewable when going to a ticket’s page would

help alleviate any confusion and miscommunication regarding customers’ issues.

EXISTING SOLUTIONS

One existing solution for the studio is hosting and maintaining a live chat service in the form

of a website. However, while a live chat service may offer fast response times, the company

will need to hire many workers to be able to sit behind a “portal” ready to answer questions

P a g e | 4

Source code available @ github.com/0xShay/SupportMe

and deal with concerns on a 24/7 basis, and this is simply not financially feasible for the

studio.

Another existing solution for the studio is using an already available commercial solution

which allows for customers to open support tickets, however many commercial solutions

are highly priced and offer services that the studio simply isn’t interested in.

For example, Zendesk is a commercially available support ticket system which the studio

was initially considering, however it offers a lot of features which the studio is realistically

very unlikely to make full use of.

Zendesk offers an “industry-leading” ticket system, with AI-powered automated answers,

detailed reporting and analytics, and data and file storage, just to name a few features of

the most basic plan.i This plan is £39 per agent per month, and considering that the studio

won’t be using most of the features on the plan, paying a cost this big simply doesn’t make

financial sense.

The studio isn’t interested in AI-automated answers or heavy analytics/data collection –

they just want a simple system which allows for customers and assistants to communicate

smoothly and solve small-scale problems.

OBJECTIVES

END-USER UTILITY

1. New users must be able to register a new account.

a. On registration success, they should automatically be logged in.

2. Returning users must be able to log into an existing account.

a. Once users are logged in, they should be sent an authentication token which

they can store in local storage – this will be used as authorization for all

future requests.

3. Users should be able to edit their password and profile picture.

P a g e | 5

Source code available @ github.com/0xShay/SupportMe

4. Users should be able to log out of their account, clearing the authentication token

from their local storage and displaying a success message.

5. Customers need to be able to open support tickets.

a. Once a support ticket has been opened they should be able to access it at a

specific link.

b. They must be able to send messages in the support ticket.

6. Assistants need to be able to read open support tickets.

a. They must be able to send messages in the support ticket.

b. They must also be able to mark a support ticket as “closed” or “open”.

STRUCTURE

1. Create SQLite database.

a. The database should contain any of the tables required and be in the correct

format ready to execute SQL statements from the Flask web server running in

Python.

2. Create RESTful API with Flask.

a. GET endpoints will be available so that data and information about tickets,

users and messages can be retrieved directly from the database and returned

in the request response.

b. POST endpoints will be available that take JSON inputs which will allow for

data regarding tickets, users and messages to be modified, as well as

facilitating any other actions that a user may execute, such as (but not limited

to):

i. Logging in

ii. Signing out

iii. Creating tickets

iv. Closing tickets

c. The RESTful API will interact directly with the local SQLite database in order

to read and update stored records.

3. Create front-end endpoints with Flask.

a. A default set of pages written entirely in HTML, CSS and JS will be accessible

via additional endpoints in the Flask server.

b. These pages will interact directly with the RESTful endpoints, in order to

allow users to interact with the support ticket system through a default

standardized graphical user interface (GUI).

4. Scalability

P a g e | 6

Source code available @ github.com/0xShay/SupportMe

a. By creating a RESTful API, in the future this will allow me (or other

developers) to easily create their own custom interfaces in order to interact

with the system. For example, if further down the line a mobile app is to be

created that interacts with the system, the app can call the GET and POST

endpoints on the RESTful API in order to allow users to interact with the

mobile app, allowing for the system to be easily scaled and highly adaptable

for the end-user.

DESIGN

WEB SERVER

The server will be split into two parts – a client-side and a server-side. The entire application

will work as a client-server model.

The back-end server will be running Flask (Python), and will communicate with a local SQLite

database to store data regarding users, tickets and messages.

The Flask server will have POST endpoints and the front-end will be comprised of static

HTML/CSS/JS files which communicate via built-in HTML/JavaScript methods (HTML form

submission & JS fetch).

Splitting up the application into a client-server model will allow for testing to be done on

individual sections in a more organized manner, as well as allowing for the back-end to act

as a baseplate for the front-end once completed.

SQL LAYOUT

The Flask back-end will store data in a local SQLite database, which will hold site-related

information.

The database will comprise of three main tables:

- The User table will store information about registered users, including both

customers and assistants. This will consist of unique user IDs for every user (primary

key), as well as key information such as usernames, passwords, and metadata

including when the account was created and the type of account.

- The Ticket table will store information about user-opened tickets. They will be

identifiable by unique IDs (primary key) and will store information about the

customer and assigned assistant (if there is one assigned), as well as metadata

including when the ticket was opened and closed.

P a g e | 7

Source code available @ github.com/0xShay/SupportMe

- The Message table will hold the content and metadata of all messages that have

been sent in tickets by users, whether that be by a customer or assistant. Metadata

will include the time the message was sent, as well as the ticket status at the time of

the message being sent.

“USER” TABLE

User(userID, username, password, createdAt, accountType, profileIcon, email)

Column Name Data Type Description Example Value(s)

userID INTEGER A unique numerical identifier
for each user, which auto-
increments.

1, 2, 3, 4

username TEXT A string that can be chosen by
the user, which displays as
their display name in support
tickets.

“John”

password TEXT A string that the user will use
to authenticate themselves
when logging in.

“securepassword123”

createdAt INTEGER A UNIX-based timestamp
representing when the user
account was created.

1678958929

accountType INTEGER Either 1 (customer) or 2
(assistant) to represent the
user’s account level.

1

profileIcon TEXT A string representing a
relative path location from
the web server to the user’s
profile icon.

“/profile-
icons/blue.png”

P a g e | 8

Source code available @ github.com/0xShay/SupportMe

email TEXT A string representing the
email address that the user
used to create their account.

“john@lavabit.com”

“TICKET” TABLE

Ticket(ticketID, customerID, assistantID, openedAt, closedAt, title)

Column Name Data Type Description Example Value(s)

ticketID INTEGER A unique numerical identifier
for each ticket, which auto-
increments.

1, 2, 3, 4

customerID INTEGER A numerical identifier which
refers to the ID of the ticket
creator in the “User” table.

1

assistantID INTEGER A numerical identifier which
refers to the ID of the ticket
assistant in the “User” table.

2

openedAt INTEGER A UNIX-based timestamp
representing when the ticket
was opened.

1678958929

closedAt INTEGER A UNIX-based timestamp
representing when the ticket
was closed (or -1 if the ticket
is still open).

-1, 1678959041

title TEXT A string title which is defined
by the customer when the
ticket is created.

“Help, the fans aren’t
working in Studio 1.”

“MESSAGE” TABLE

Message(messageID, ticketID, authorID, body, sentAt)

Column Name Data Type Description Example Value(s)

messageID INTEGER

A unique numerical identifier
for each ticket, which auto-
increments.

1, 2, 3, 4

ticketID INTEGER A numerical identifier which
refers to the ID of the ticket
in the “Ticket” table.

1

authorID INTEGER A numerical identifier which
refers to the ID of the
message sender in the “User”
table.

1

P a g e | 9

Source code available @ github.com/0xShay/SupportMe

body TEXT

A string representing the
content of the message.

“The fans in the
studio don’t seem to
be working properly, I
think it might be
something to do with
the switch.”

sentAt INTEGER A UNIX-based timestamp
representing when the
message was sent.

1678959041

ENDPOINTS

These endpoints will act as the backbone, and the entire system’s functionality will be

useable with these endpoints alone.

SERVER-SIDE ENDPOINTS

1. POST /register – this endpoint will take in user registration data in JSON and create

an account (or return an error)

2. POST /login – this endpoint will take in user credentials (in JSON) and generate and

return a web token or return an error

3. GET /get-profile/<int:user_id> – this endpoint will query the database for the user

with the given ID and return a JSON response if the user is authenticated to get

profile information for that user

4. POST /ticket/new – JSON can be posted here to create a new ticket with a given title

and initial message

5. GET /get-ticket/<int:ticket_id> – this endpoint will return a JSON object containing

information about the ticket, e.g. when it was opened, when it was closed, the

assigned assistant

6. POST /ticket/<int:ticket_id> – this endpoint will be used to append messages to the

ticket – the client-side will use this endpoint when users want to send messages or

run open/close commands

P a g e | 10

Source code available @ github.com/0xShay/SupportMe

7. GET /get-open-tickets/<int:user_id> – this endpoint can be used to get a user’s open

tickets

8. GET /get-closed-tickets/<int:user_id> – this endpoint can be used to get a user’s

closed tickets

9. GET /get-unclaimed-tickets – this endpoint can be used to get a list of claimable

tickets (with no assistant assigned to them)

10. GET /get-messages/<int:ticket_id> – this endpoint will return a JSON response with a

list of messages sent in the ticket with the given ID

11. POST /profile – when updating profile information, this endpoint can be used to

update any records in the database regarding user information

CLIENT-SIDE ENDPOINTS

Any endpoints below will simply be rendering HTML/CSS/JS and return it to the client – they

aren’t crucial to backend functionality and simply add a layer over raw API calls from the

client’s browser to the server.

As a result, server-side and client-side endpoints will be tested separately during the testing

phase.

1. GET /home – this will display different information depending on the type of user

account that’s logged in – if an assistant is logged in a list of unclaimed and claimed

tickets will appear, and if a customer is logged in, they will see a list of their open

and closed tickets

2. GET /register – this will have a form, and on submission it will POST to the /register

endpoint, displaying the result of the request on the page

P a g e | 11

Source code available @ github.com/0xShay/SupportMe

3. GET /login – this will have a form, and on submission it will POST to the /login

endpoint, displaying the result of the request on the page

4. GET /ticket/new – this will have a form, and on submission it will POST to the

/ticket/new endpoint, displaying the result of the request on the page

5. GET /ticket/<int:ticket_id> – this endpoint will return a rendered template page,

displaying the most recent messages in the ticket as well as other key information

6. GET /profile – this page will act as an “edit profile” page where users can update

their account information and profile picture

To prevent issues being left unsolved for large periods of time, “inactive tickets” will display

on assistants’ dashboards, sorted by the time tickets were opened. This will allow old tickets

to remain relevant if they are still open, and will hopefully remind assistants that the ticket

is still awaiting a response.

DEALING WITH MALFORMED REQUESTS TO FLASK ENDPOINTS

One problem I will face when creating this system is the risk of malicious users sending

malformed JSON requests to Flask endpoints. I don’t want the server to be negatively

impacted by malicious client machines sending requests with invalid JSON in the body of the

request.

By wrapping POST requests where JSON input is accepted in the request body in a Python

try-except block, I can return an error code if the request is interpreted as malformed by the

server.

CONNECTING TO AND INTERACTING WITH THE SQLITE DATABASE

P a g e | 12

Source code available @ github.com/0xShay/SupportMe

The sqlite3 PIP library documented extensively at

https://docs.python.org/3/library/sqlite3.html will allow me to interact with the local

database file to perform queries and retrieve data from the database.

I will need to perform a range of CRUD (create, read, update, delete) functions in response

to GET and POST requests sent by clients to the Flask server. A few examples include:

- An INSERT query to create new users on registration

- A SELECT query to read users’ login information when verifying credentials

- An UPDATE query to update a ticket’s assigned assistant ID when a new assistant

claims it

I will also need to ensure that I use prepared statements to prevent any possible SQL

injection attacks from occurring, as a result of a malicious user attempting to send in a

malicious query which could harm the database and cause data loss or corruption.

HANDLING USER AUTHENTICATION

To authenticate users, I will be making use of JSON Web Tokens. As outlined in RFC 7519ii, a

JSON Web Token (JWT) is a “compact, URL-safe means of representing claims to be

transferred between two parties”. I will be able to leverage the use of signed JWTs to

encrypt unique tokens for logged in users. As a result, session data will not need to be

stored in any substantial capacity on the server-side, and the client-side will be able to use

their JWT whenever they make a request to the server. This enables the system to work as a

thick-client model, where clients handle their own authentication for the most part, and the

server does minimal work to decrypt and verify keys.

On both the client-side and server-side, I will need to be able to quickly encrypt, decrypt and

verify web tokens. On the server-side, I will need to predefine a secret phrase, and create a

subroutine which takes in inputs regarding the user to generate a token for, returning a web

token that the user can store in their local storage on the client-side. When the user then

makes requests with their token, the server will also need a subroutine to decrypt the web

token to get the user ID of the request sender.

Not only will the server need to be able to use JWTs in this manner, but on the client-side,

the only value stored in local storage will be the web token, so if I want to get information

about the logged in user’s profile, I will need to be able to decode the user’s stored token to

get their user ID, and then make a request to the server to get the user’s profile

information.

https://docs.python.org/3/library/sqlite3.html

P a g e | 13

Source code available @ github.com/0xShay/SupportMe

For the server-side, I plan to use the PyJWT module (outlined at

https://pyjwt.readthedocs.io/en/latest/) to encode and decode access tokens when

requests are made to protected endpoints.

On the client-side, I will need to decode JWTs in JavaScript – I intend to make use of the

open-source JWT decode tool at https://github.com/auth0/jwt-decode to decrypt tokens

and get user data where necessary in the front-end. For example, I will need to decrypt the

user’s stored web token when I want to get the user ID to get profile information about the

logged in user.

SERVING DYNAMIC CONTENT ON THE HOMEPAGE

As briefly stated above, the homepage should show logged in users a list of their open and

closed tickets. Most recently opened tickets will be displayed at the bottom.

When assistants log in, alongside open and closed tickets, they will also be able to see a list

of unclaimed tickets that they can claim. The earliest-most opened tickets will be shown at

the top, to create a “priority queue” of tickets. It was a large concern of my client that many

customers’ concerns were being left abandoned after large periods of time – this can be

avoided by ordering unclaimed tickets by the time they were opened.

PROMOTING CUSTOMER ACCOUNTS TO ASSISTANT ACCOUNTS AND VICE -VERSA

https://pyjwt.readthedocs.io/en/latest/
https://github.com/auth0/jwt-decode

P a g e | 14

Source code available @ github.com/0xShay/SupportMe

I don’t intend to add functionality to the site to change account types – instead I’d like to

leave that up to the server administrator. For the studio, a simple interface to change a

user’s account type using their user ID will suffice.

I will create a simple Python script, which takes in two inputs (user ID and account type),

opens a connection to the local database, performs the single UPDATE operation and prints

out a response. To change an account’s type, the server administrator will simply have to

run a Python script and enter some values. If they want to update a customer account to an

assistant account, they just need the ID of the customer account, and direct access to the

server on which the database file is located.

P a g e | 15

Source code available @ github.com/0xShay/SupportMe

TECHNICAL BUILD

DATABASE INITIALIZATION

As previously stated, the database of choice is a local SQLite database, stored as a file on the

same machine as the Flask server which will be delivering content.

I have created an empty data.db file in the project’s root directory using the DB Browser for

SQLite. This file will store all data regarding users, tickets and messages. The table schemas

were created with the DB Browser for SQLite (DB4S) software and the table creation

commands are shown below:

The “User” table will store all the information regarding registered users and assistants. It

will store usernames, passwords, as well as when the user account was created, the type of

account and the email address that the user registered with.

The “Ticket” table will store metadata and key information about open and closed tickets. It

will store information about who the customer is (customerID) and the assistant assigned to

the ticket (assistantID). It will also store when the ticket was opened (and closed if it has

been closed).

CREATE TABLE "User" (

 "userID" INTEGER,

 "username" TEXT,

 "password" TEXT,

 "createdAt" INTEGER,

 "accountType" INTEGER,

 "profileIcon" TEXT,

 "email" TEXT,

 PRIMARY KEY("userID" AUTOINCREMENT)

);

CREATE TABLE "Ticket" (

 "ticketID" INTEGER,

 "customerID" INTEGER,

 "assistantID" INTEGER,

 "openedAt" INTEGER,

 "closedAt" INTEGER,

 "title" TEXT,

 FOREIGN KEY("customerID") REFERENCES "User"("userID"),

 FOREIGN KEY("assistantID") REFERENCES "User"("userID"),

 PRIMARY KEY("ticketID" AUTOINCREMENT)

);

P a g e | 16

Source code available @ github.com/0xShay/SupportMe

The “Message” table will store information about messages that customers and assistants

send in tickets. They will link to users by authorID foreign key and will be assigned to a ticket

via the ticketID foreign key. When the message was sent will also be stored.

A “System” account will also be pre-created – this account will be responsible for sending

system messages in tickets, notifying users when a ticket’s status has changed or when an

assistant has claimed a ticket.

CONSTANTS

At the top of the main server.py file, by defining a set of constants, I can maintain referential

integrity throughout my program, and instead of having integers spontaneously spread out

in code, I can refer to predefined constants.

ACCOUNT_TYPE_CUSTOMER = 1

ACCOUNT_TYPE_ASSISTANT = 2

TICKET_STATUS_OPEN = 1

TICKET_STATUS_CLOSED = 2

SYSTEM_USER_ID = 0

These constants are also defined in a constants.js static file, accessible from the client-side:

const ACCOUNT_TYPE_CUSTOMER = 1

INSERT INTO "User"

("userID", "username", "password", "createdAt", "accountType",

"profileIcon", "email")

VALUES

(0, "System", "securepassword", 0, 2, "/profile-

icons/admin.png", "Ed_Snowden@lavabit.com");

CREATE TABLE "Message" (

 "messageID" INTEGER,

 "ticketID" INTEGER,

 "authorID" INTEGER,

 "body" TEXT,

 "sentAt" INTEGER,

 FOREIGN KEY("ticketID") REFERENCES "Ticket"("ticketID"),

 FOREIGN KEY("authorID") REFERENCES "User"("userID"),

 PRIMARY KEY("messageID" AUTOINCREMENT)

);

P a g e | 17

Source code available @ github.com/0xShay/SupportMe

const ACCOUNT_TYPE_ASSISTANT = 2

const TICKET_STATUS_OPEN = 1

const TICKET_STATUS_CLOSED = 2

const SYSTEM_USER_ID = 0

DEALING WITH MALFORMED REQUESTS TO FLASK ENDPOINTS

In order to protect the web server from being susceptible to malformed HTTP requests on

the post endpoints, I can wrap any POST request logic in a try-except statement – this

means if any JSON is invalid and an error is thrown, the code in the “except” part of the

statement will execute, returning an error code in the response and notifying the user that

the request was invalid.

elif request.method == 'POST':

 try:

 # REQUEST LOGIC GOES HERE

 except:

 return ({ "error": "Server failed to parse the request." }, 400)

CONNECTING TO AND INTERACTING WITH THE SQLITE DATABASE

I will make use of the sqlite3 library as planned, as it is well-documented and updated

regularly. It allows me to connect to the database and execute queries easily using cursor

objects.

import sqlite3

To connect to the database, I’m making use of Python’s built-in with keyboard to maintain

an open connection with the local database in different subroutines:

with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

Any user-inputted values need to be handled securely to prevent SQL injection attacks from

occurring. This can be achieved by using prepared statements when executing queries:

cursor.execute(

 "INSERT INTO User (username, password, createdAt, accountType,

profileIcon, email) VALUES (?, ?, ?, ?, ?, ?)",

 [username, password, int(time.time()), ACCOUNT_TYPE_CUSTOMER,

"/profile-icons/blue.png", email]

)

P a g e | 18

Source code available @ github.com/0xShay/SupportMe

I will need to execute queries when creating new user accounts, validating login

information, creating new tickets, getting ticket information, creating new messages, and

getting a list of messages from the database.

When using the SELECT keyword in queries, I can use cursor.fetchall() to get all of

the returned rows. For example, I used a SELECT statement to validate a user’s login

credentials as seen below:

def login_user(username, password):

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT userID, password, accountType FROM User

WHERE username = ?", [username])

 user_list = cursor.fetchall()

 if len(user_list) == 0:

 return (False, "A user with the supplied username and password

was not found.")

 _user_id, _password, _account_type = user_list[0]

 if password == _password:

 access_token = generate_access_token(_user_id, _account_type)

 return (True, access_token)

 else:

 return (False, "A user with the supplied username and password

was not found.")

I begin by opening a connection to the database, and then establish a local cursor variable.

After executing the SELECT statement (searching by the username that is the first parameter

of the function), I make use of the cursor’s fetchall method to get a list of returned

rows.

I can check if there is a user registered with that username or not by simply checking the

number of records that were returned – if 0 records were returned then the query was

unable to find any users with that username.

Further below, if a row was returned from the query it means that a user with the supplied

username exists in the database. An if statement is used to check if the passwords match,

and if they do I generate and return an access token with the generate_access_token

method explained in more detail below. However, if the passwords don’t match I return an

error in the same fashion as when the usernames didn’t match.

By returning the same error message in both cases, it eliminates the possibility of a user

enumeration vulnerabilityiii – an attacker cannot determine if a username is present or not

P a g e | 19

Source code available @ github.com/0xShay/SupportMe

in the database by simply brute-forcing different usernames. This reduces the future risk of

social engineering attacks occurring amongst others.

HANDLING USER AUTHENTICATION

When encrypting JSON Web Tokens, I will need a server-side secret key. To generate a

relatively insecureiv key I used list comprehension and Python’s join function to produce

64 randomly selected hex characters:

"".join([random.choice(["0", "1", "2", "3", "4", "5", "6", "7", "8", "9",

"A", "B", "C", "D", "E", "F"]) for i in range(64)])

When used in production, a more secure private key can be generated through

cryptographically secure methods and the default one can be replaced at the top of the file.

On the server-side, JWTs will need to be generated whenever a user:

a) registers a new account, or

b) logs into an existing account.

When a user registers with a new account, on the server’s receipt of a POST request to the

/register endpoint, the server will proceed to run create_user, which attempts to insert

the new user into the database. If successful, the generate_access_token method is

then called, and the access token is returned to the request sender.

When a user logs in to an account, on the server’s receipt of a POST request to the /login

endpoint, the server first checks that the user’s credentials match the credentials stored in

the database, and then proceeds to invoke the generate_access_token method,

returning the result in the response.

The PyJWT library allows me to encode and decode JSON Web Tokens on the Python server

with ease.

import jwt

def generate_access_token(user_id, account_type):

 access_token = jwt.encode({

 "user_id": user_id,

 "account_type": account_type,

 "exp": int(time.time()) + 86400

 }, JWT_SECRET_KEY, algorithm="HS256")

 return access_token

P a g e | 20

Source code available @ github.com/0xShay/SupportMe

I start by importing PyJWT (import jwt) – this library gives me access to two methods

that will come in useful when I generate and verify access tokens: jwt.encode and

jwt.decode.

The generate_access_token method is shown above – the subroutine has two

parameters: a user id and the user’s account type. These two properties, along with an

expiry date are encoded using PyJWT’s encode method and signed using the secret key

defined at the top of the file.

The “exp” property of the token allows for the user’s requests to become invalidated after

86400 seconds (24 hours), forcing them to revalidate themselves. This allows for increased

user security and can minimise the risk of confidential messages being leaked.

On the client-side, on every page, the getLoggedInUser() JavaScript method is called,

which is defined in the userTools.js script, which is loaded into every page.

const getDecodedAccessToken = () => {

 return localStorage.getItem("access_token") != null ?

jwt_decode(localStorage.getItem("access_token")) : null;

}

function getLoggedInUser() {

 let d_at = getDecodedAccessToken();

 if (d_at == null) return null;

 if (d_at["exp"] < (Date.now() / 1000)) {

 localStorage.removeItem("access_token");

 return null

 };

 return d_at;

}

In the getDecodedAccessToken function, I make use of a jwt_decode method – this

function is defined in /src/jwt-decode.js, and this open-source tool has been obtained from

https://github.com/auth0/jwt-decode.

In the getLoggedInUser function shown above, the access token is decoded, and if it

has expired, it is removed from local storage, and the function returns “null”. On pages

where the user must be logged in, the line below is present:

if (getLoggedInUser() == null) window.location.href = "/login";

If the user is not logged in or their access token is invalidated, the user will be redirected to

the /login page.

async function register() {

 let username_input = document.getElementById("username_input");

 let email_input = document.getElementById("email_input");

 let password_input = document.getElementById("password_input");

https://github.com/auth0/jwt-decode

P a g e | 21

Source code available @ github.com/0xShay/SupportMe

 let passwordc_input = document.getElementById("passwordc_input");

 if (password_input.value != passwordc_input.value) return

alert("Passwords do not match.")

 const res = await (await fetch('/register', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 redirect: 'manual',

 body: JSON.stringify({

 username: username_input.value,

 email: email_input.value,

 password: password_input.value

 })

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 } else {

 localStorage.setItem("access_token", res["access_token"]);

 window.location.href = "/home";

 };

}

async function login() {

 let username_input = document.getElementById("username_input");

 let password_input = document.getElementById("password_input");

 const res = await (await fetch('/login', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 redirect: 'manual',

 body: JSON.stringify({

 username: username_input.value,

 password: password_input.value

 })

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 } else {

 localStorage.setItem("access_token", res["access_token"]);

 window.location.href = "/home";

 };

}

The register() and login() functions are called by buttons in HTML, and they make

use of local storage to store access tokens that are returned by the server.

P a g e | 22

Source code available @ github.com/0xShay/SupportMe

When sending requests to the server from the client-side in JavaScript, I will use fetch to

pass the stored access token into the Authorization header field:

const res = await (await fetch('/ticket/' + ticketID, {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + localStorage.getItem("access_token")

 },

 body: JSON.stringify({

 message: message_input.value

 })

})).json();

This access token can then be picked up server-side and verified:

def verify_access_token(access_token):

 try:

 d_at = jwt.decode(access_token.split(" ")[1], JWT_SECRET_KEY,

algorithms=["HS256"])

 if d_at["exp"] < time.time():

 return None

 else:

 return d_at

 except:

 return None

@App.route('/get-profile/<int:user_id>', methods=['GET'])

def get_profile_by_user_id_req(user_id):

 if request.method == 'GET':

 auth_user =

verify_access_token(request.headers.get("Authorization"))

 if auth_user == None:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

As shown above, the verify_access_token method uses PyJWT’s decode method to

get a JSON representation of the encoded value. If the access token is malformed, since it’s

in a try-except block, the function simply returns None. However, if the token is not

malformed, the expiry date property (“exp”) of the token is checked, and if the token is

expired the method returns None. If the token is valid, the JSON representation of the

token is returned, containing the user’s user ID and the expiry date of the token.

If the user is not authenticated for the request, a (Forbidden) 403 error will be returned to

the client.

P a g e | 23

Source code available @ github.com/0xShay/SupportMe

SERVING DYNAMIC CONTENT ON THE HOMEPAGE

If the user is not logged in to an account, they will be redirected to the login page.

This can be easily achieved by calling the getLoggedInUser JavaScript function to check if

there is a valid access token, and if there isn’t, the page can redirect to the login page:

if (getLoggedInUser() == null) window.location.href = "/login";

If the user is logged into an account, their account type (decoded from their access token)

will be used to decide what content to serve.

Both customers and assistants should be able to see open and closed tickets that they are

involved in, however on top of that, assistants should be able to see claimable tickets.

@App.route('/get-open-tickets/<int:user_id>', methods=['GET'])

@App.route('/get-closed-tickets/<int:user_id>', methods=['GET'])

@App.route('/get-unclaimed-tickets', methods=['GET'])

I made these three routes so that customers and assistants can both request open and

closed tickets, where they are either the customerID, or assistantID of that ticket:

SELECT ticketID, customerID, assistantID, openedAt, closedAt, title FROM

Ticket WHERE (customerID = ? OR assistantID = ?) AND closedAt = -1 ORDER BY

openedAt ASC;

SELECT ticketID, customerID, assistantID, openedAt, closedAt, title FROM

Ticket WHERE (customerID = ? OR assistantID = ?) AND closedAt != -1 ORDER

BY closedAt DESC;

Whilst assistants can also get a list of unclaimed tickets:

SELECT ticketID, customerID, assistantID, openedAt, closedAt, title FROM

Ticket WHERE assistantID = -1 ORDER BY openedAt ASC;

It was a large concern of my client that many customers’ concerns were being left

abandoned after large periods of time. By ordering unclaimed tickets by the time they were

opened, this allows for assistants to see which tickets were opened first, and prioritize

resolving older issues before moving on to solving newer ones.

P a g e | 24

Source code available @ github.com/0xShay/SupportMe

PROMOTING CUSTOMER ACCOUNTS TO ASSISTANT ACCOUNTS AND VICE -VERSA

A file can be found in the /tools directory, named “changeAccountType.py” – the server

admin can run this file, inputting a user ID and the level that they want to set the user

account at. This will update the database, or return any relevant errors to the console:

import sqlite3

user_id = int(input("Enter the user ID of the account: "))

account_type = int(input("Enter an account type to set (1 = customer, 2 =

assistant): "))

with sqlite3.connect("../data.db") as connection:

 try:

 cursor = connection.cursor()

 cursor.execute("UPDATE User SET accountType = ? WHERE userID = ?;",

[account_type, user_id])

 if cursor.rowcount == 0:

 print("User with given ID was not found in the database.

Terminating.")

 else:

 print(f"User with ID {user_id}'s account type has been

successfully updated to {account_type}.")

 except sqlite3.Error as error:

 print(error)

The server admin can therefore notify any assistants that they should register a customer

account, and then their accounts can be manually promoted to assistant accounts so that

they can claim tickets. Customers can open tickets; however assistant accounts are unable

to open tickets. If an assistant wants support, they will have to create a new customer

account and open a ticket through that.

For my client, this is not an issue, since all assistants will be using email accounts on the

studio’s business domain for their assistant accounts, and so if the assistants want to

request support, they will be encouraged by their employer to create a separate personal

account with a personal email address.

P a g e | 25

Source code available @ github.com/0xShay/SupportMe

TESTING

Testing will be split into two sections – server-side endpoints will be tested with inputs for

expected outputs, and client-side endpoints will be tested separately, and tests will be

displayed on a video.

TESTING SERVER-SIDE ENDPOINTS (BACK-END)

Each server-side endpoint will be tested with valid, and erroneous data, and the input,

expected output and result of each test will be displayed in the table below.

POST /register

Expectation The details supplied in this request should all be valid, and an access token
should be returned.

Request
Headers

Request
Body

{
 "username": "John",
 "email": "johndoe@website.net",
 "password": "securepassword"
}

Request
Response

{ "access_token": "eyJh...XLfk" }

Test Result ✔ - The server returned an access token which can be decoded to get the
user ID, account type, and expiry date of the token.

Expectation The password provided here is less than the minimum number of
characters (8), and so an error should be returned.

Request
Headers

Request
Body

{
 "username": "Jane",
 "email": "janedoe@website.net",
 "password": "2short"
}

Request
Response

{ "error": "Password must be at least 8 characters." }

Test Result ✔ - The account was not created and the server responded with an error.

P a g e | 26

Source code available @ github.com/0xShay/SupportMe

POST /login

Expectation The details supplied in this request should all be valid, and an access token
should be returned.

Request
Headers

Request
Body

{
 "username": "John",
 "password": "securepassword"
}

Request
Response

{ "access_token": "eyJh…208M" }

Test Result ✔ - The server returned an access token which can be decoded to get the
user ID, account type, and expiry date of the token.

Expectation A user with the supplied username and password does not exist, and so
this request should return an error.

Request
Headers

Request
Body

{
 "username": "Tommy",
 "password": "tommyspassword1234"
}

Request
Response

{ "error": "A user with the supplied username and password was not found."
}

Test Result ✔ - The username-password pair was not found in the database and the
server responded with a suitable error.

GET /get-profile/13

Expectation The user ID provided (13) is the user ID of the newly created "John"
account, and the access token is John's token (who is authorized to make
this request), so John's profile information should be returned.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

Request
Response

{
 "user": {

P a g e | 27

Source code available @ github.com/0xShay/SupportMe

 "account_type": 1,
 "created_at": 1676902471,
 "profile_icon": "/profile-icons/red.png",
 "user_id": 13,
 "username": "John"
 }
}

Test Result ✔ - As expected, information about the user's profile was returned.

Expectation Since no access token has been provided, and this request requires
authentication, the server should respond with an authentication error.

Request
Headers

Request
Body

Request
Response

{ "error": "User is not authenticated to make this request." }

Test Result ✔ - The server returned an authentication error as intended.

POST /ticket/new

Expectation The details supplied to open the ticket match the validation requirements,
and so this request should successfully create a ticket and return the ticket
ID.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

{
 "ticket_title": "The toilet roll is finished",
 "message": "The toilet roll… could get it refilled?"
}

Request
Response

{ "message_id": 74, "ticket_id": 9 }

Test Result ✔ - As intended, a new ticket was created and the ID was returned in the
response body.

Expectation In this request, a ticket title was not provided, only a message. The server
should respond with an error since the user has not supplied all the
required information to open a ticket.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

P a g e | 28

Source code available @ github.com/0xShay/SupportMe

Request
Body

{
 "message": "The toilet roll… could get it refilled?"
}

Request
Response

{ "error": "The request failed." }

Test Result ✔ - The response returned with error code 400 (BAD REQUEST) since the
information provided was insufficient to open a ticket.

GET /get-ticket/9

Expectation The response should contain information about the newly created ticket
with ID 9.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

Request
Response

{
 "ticket_data": {
 "assistant_id": -1,
 "closed_at": -1,
 "customer_id": 13,
 "opened_at": 1676904963,
 "ticket_id": 9,
 "title": "The toilet roll is finished"
 }
}

Test Result ✔ - Information about the ticket was returned as expected.

Expectation The token provided is for a customer account who is not involved in any
way with ticket 9 - they should be unauthorized to get information about
this ticket.

Request
Headers

{
 "Authorization": "Bearer eyJh...42G4"
}

Request
Body

Request
Response

{ "error": "User is not authenticated to make this request." }

Test Result ✔ - The server returned an authentication error as intended.

POST /ticket/9

P a g e | 29

Source code available @ github.com/0xShay/SupportMe

Expectation Since a valid message is being sent to the ticket by the customer who
opened it, the request should be successful.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

{
 "message": "I believe it ran out last night."
}

Request
Response

{ "message_id": 75, "ticket_id": 9 }

Test Result ✔ - A new message was created in the database with ID 75, and no errors
were returned.

Expectation Message length should be at least 8 characters - sending this short message
should return an error.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

{
 "message": "help"
}

Request
Response

{ "error": "Message length must be at least 8 characters - be
descriptive." }

Test Result ✔ - As expected, an error was returned notifying the user of their poor
input.

GET /get-open-tickets/13

Expectation A valid authentication token is being used to get a list of open tickets for
the logged in customer - the request should respond with a list of open
tickets for the user.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

Request
Response

{ "tickets": [
 {
 "assistant_id": -1,
 "closed_at": -1,

P a g e | 30

Source code available @ github.com/0xShay/SupportMe

 "customer_id": 13,
 "opened_at": 1676904963,
 "ticket_id": 9,
 "title": "The toilet roll is finished"
 }
] }

Test Result ✔ - The server responded with a list of tickets that are marked as OPEN
that involve the authorized user.

Expectation With another user's authentication token, the request should fail, as only
the user themselves can see their own tickets.

Request
Headers

{
 "Authorization": "Bearer eyJh...42G4"
}

Request
Body

Request
Response

{ "error": "User is not authenticated to make this request." }

Test Result ✔ - Since the user is not authorized to get user with ID 13's tickets, the
server returned an authentication error.

GET /get-closed-tickets/13

Expectation Using the authentication token of an assistant account, this request should
return a list of tickets which have no assistant assigned to them.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

Request
Response

{ "tickets": [] }

Test Result ✔ - As expected, the server returned an empty list, since none of the user's
tickets are closed.

Expectation With another user's authentication token, the request should fail, as only
the user themselves can see their own tickets.

Request
Headers

{
 "Authorization": "Bearer eyJh...42G4"
}

P a g e | 31

Source code available @ github.com/0xShay/SupportMe

Request
Body

Request
Response

{ "error": "User is not authenticated to make this request." }

Test Result ✔ - Since the user is not authorized to get user with ID 13's tickets, the
server returned an authentication error.

GET /get-unclaimed-tickets/13

Expectation Using the authentication token of an assistant account, this request should
return a list of tickets which have no assistant assigned to them.

Request
Headers

{
 "Authorization": "Bearer eyJh...WWA4"
}

Request
Body

Request
Response

{ "tickets": [
 {
 "assistant_id": -1,
 "closed_at": -1,
 "customer_id": 13,
 "opened_at": 1676904963,
 "ticket_id": 9,
 "title": "The toilet roll is finished"
 }
] }

Test Result ✔ - The server responded with a list of tickets that are marked as
UNCLAIMED as the user is an assistant who is authorized to make this
request.

Expectation If the authentication token of a customer account is used, an
authentication error should be returned, as this request is exclusively for
assistant accounts.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

Request
Response

{ "error": "User is not authenticated to make this request." }

Test Result ✔ - Since the user is a customer account, they are not authorized to get a
list of unclaimed tickets, so the server returned an authentication error.

P a g e | 32

Source code available @ github.com/0xShay/SupportMe

GET /get-messages/9

Expectation This endpoint should return a list of messages that have been sent in the
ticket. It should return the two messages that have been sent by the
customer.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

Request
Response

{ "message_list": [
 {
 "author_id": 13,
 "body": "I believe it ran out last night.",
 "message_id": 75,
 "sent_at": 1676911540
 }, {
 "author_id": 13,
 "body": "The toilet roll… could get it refilled?",
 "message_id": 74,
 "sent_at": 1676904963
 }
], "ticket_id": 9 }

Test Result ✔ - A list of messages sent in the ticket were returned to the user, along
with message metadata.

Expectation If an authentication token is not set in the headers, we cannot be certain
that the requester is authorized to view the messages so an error should be
returned.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

Request
Response

{ "error": "User is not authenticated to make this request." }

Test Result ✔ - Since no authentication token was set, an authentication error was
returned.

POST /profile

Expectation The user's profile should be updated, and the endpoint should return a
success message.

Request
Headers

P a g e | 33

Source code available @ github.com/0xShay/SupportMe

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

{
 "new_password": "securepassword2",
 "old_password": "securepassword",
 "profile_icon": "/profile-icons/purple.png"
}

Request
Response

{ "msg": "Profile has been updated." }

Test Result ✔ - The user's profile was successfully updated since a valid old password
was provided.

Expectation Even though the authentication token is valid, since the wrong old
password was provided, the request should throw an authentication error
and not make any changes to the user's profile.

Request
Headers

{
 "Authorization": "Bearer eyJh...208M"
}

Request
Body

{
 "new_password": "randompassword",
 "old_password": "nottoosure",
 "profile_icon": "/profile-icons/purple.png"
}

Request
Response

{ "error": "Incorrect password was provided." }

Test Result ✔ - The server responded with a 403 code, since an incorrect old password
was provided.

Below I test the try-catch statements I implemented, by sending malformed body

parameters to POST requests:

POST /register

Expectation Since an invalid JSON body was provided in the body, the server should
respond with an error.

Request
Headers

Request
Body

[]

Request
Response

{ "error": "Server failed to parse the request." }

Test Result ✔ - The server responded with a 400 BAD REQUEST error as expected.

P a g e | 34

Source code available @ github.com/0xShay/SupportMe

POST /login

Expectation Since an invalid JSON body was provided in the body, the server should
respond with an error.

Request
Headers

Request
Body

"Hello world!"

Request
Response

{ "error": "Server failed to parse the request." }

Test Result ✔ - The server responded with a 400 BAD REQUEST error as expected.

TESTING CLIENT-SIDE ENDPOINTS (FRONT-END)

FRONT-END TEST PLAN

To test the front-end I will create a video which demonstrates the utilization of every page

on the website.

1) The customer will first try to log in and they should get an error due to not having an

account yet.

2) They should then try to register a new account, but the passwords should not match

(so an error should be returned).

3) Then, they should be able to successfully register after matching the passwords, and

be automatically logged in to the homepage, where they can see open and closed

tickets.

4) The customer will then open a support ticket, and it should take them to the ticket’s

page.

5) The customer will attempt to send a message in the ticket, and then go back to the

homepage.

6) The customer will now attempt to edit their profile.

7) The assistant will then register with a password that is too short, after which they

will put in a longer password and create an account.

8) The assistant should be redirected to the homepage after creating their account.

9) The server admin will run the changeAccountType.py script from the terminal to

promote the newly created account to an assistant account.

10) The assistant will log out and try to log in with an incorrect password.

11) The assistant will then log in with the correct password, and should be redirected to

the homepage, where they can see open, closed, and claimable tickets.

12) The assistant will click on the unclaimed ticket, and proceed to claim it.

P a g e | 35

Source code available @ github.com/0xShay/SupportMe

13) The assistant will send a message in the ticket, and then close it.

14) The assistant will log out.

15) The customer will go to the homepage, see the ticket in the “closed tickets” section

and click on it.

16) The customer should be able to see the messages that the assistant has sent, as well

as when the ticket was marked as closed.

17) The customer will then proceed to log out.

FRONT-END TESTS

https://youtu.be/gjKSlZR-KK0 - 7517 NEA SupportMe front-end tests

Customer

- 00:00 – /login

- 00:10 - /register

- 00:23 - /home

- 00:27 - /ticket/new

- 00:42 - /ticket/1

- 00:59 - /profile

Assistant

- 01:18 - /register

- 01:35 - changeAccountType.py tool

- 01:46 - /login

https://youtu.be/gjKSlZR-KK0
https://www.youtube.com/embed/gjKSlZR-KK0?feature=oembed

P a g e | 36

Source code available @ github.com/0xShay/SupportMe

- 01:59 - /home

- 02:02 - /ticket/1

The video above not only tests each front-end endpoint, but also shows where the project

has met the end-user utility objectives initially stated in the success criteria.

1. New users must be able to register a new account.

a. On registration success, they should automatically be logged in.

 00:10, 01:18

2. Returning users must be able to log into an existing account.

a. Once users are logged in, they should be sent an authentication token which

they can store in local storage – this will be used as authorization for all

future requests.

 01:46

3. Users should be able to edit their password and profile picture.

 00:59

4. Users should be able to log out of their account, clearing the authentication token

from their local storage and displaying a success message.

 02:25

5. Customers need to be able to open support tickets.

a. Once a support ticket has been opened they should be able to access it at a

specific link.

 00:26

b. They must be able to send messages in the support ticket.

 00:43

6. Assistants need to be able to read open support tickets.

a. They must be able to send messages in the support ticket.

 02:01

b. They must also be able to mark a support ticket as “closed” or “open”.

 02:17

P a g e | 37

Source code available @ github.com/0xShay/SupportMe

EVALUATION

SUCCESS CRITERIA

END-USER UTILITY

End-User Utility Objective Met? Evaluation

1) New users must be able
to register a new account.

a) On registration
success, they should
automatically be
logged in.

 Users can go to the /register page, which will POST
to the /register endpoint on the server, with the
new user’s details. Once a response is received
from the server, the /register page will redirect to
/home and the user will be automatically logged in.

User feedback
“Brilliant, but it would be nice to have the set of
rules for a password to be valid show before the
user enters an invalid password, so that the user
can think of a valid password to begin with.”

2) Returning users must be
able to log into an existing
account.

a) Once users are
logged in, they
should be sent an
authentication token
which they can store
in local storage – this
will be used as
authorization for all
future requests.

 If a user already has an account, they can go to the
/login page and log in with their details, which will
POST to the /login endpoint on the server. The
server will respond with an error if the credentials
are invalid, or an access token if the credentials are
valid. The client-side code on the /login page will
take this access token and append it to the user’s
browser’s local storage, which allows for requests
in the future to access the user’s access token.

User feedback
“Well designed.”

3) Users should be able to
edit their password and
profile picture.

 On the /profile page, users can edit their password
or choose from a range of different profile pictures.
This will call the POST /profile endpoint on the
server, which will run an UPDATE statement on the
SQLite server, updating the database.

User feedback
“The option to change your profile picture adds a
sense of freedom! However, it’s not made clear that
clicking the title of the site returns to the homepage
so I was stuck there for a while.”

P a g e | 38

Source code available @ github.com/0xShay/SupportMe

4) Users should be able to
log out of their account,
clearing the authentication
token from their local
storage and displaying a
success message.

 Users can log out from the homepage by clicking
the “log out” button at any time. This will trigger a
function on the client-side, removing the access
token from the user’s local storage and displaying a
“logged out” message, followed by a redirection to
the /login page.

User feedback
“I like how it immediately redirects me back to the
login page, and it confirms when I have logged
out.”

5) Customers need to be
able to open support
tickets.

a) Once a support
ticket has been
opened they should
be able to access it
at a specific link.

b) They must be able to

send messages in
the support ticket.

 Customers can create a new ticket at the
/ticket/new page, which will call the /ticket/new
POST endpoint on the server with information
about the ticket to be created. The server will
respond with an error, or a ticket ID. By going to
/ticket/:ticketID the user can view their specific
ticket’s details and messages. At that page, they
can also send messages in the input box, which will
POST to the /ticket endpoint with the message data
to be sent. The endpoint will append the message
data to the database.

User feedback
“The unique URL allows for easy accessibility to the
ticket, and clients can bookmark the link and come
back to check for updates.”

6) Assistants need to be
able to read open support
tickets.

a) They must be able to

send messages in

the support ticket.

b) They must also be

able to mark a

support ticket as

“closed” or “open”.

 Assistants can see a list of open tickets on the
/home page, and can send messages in the ticket at
any time through the /ticket/:ticketID page, even if
they haven’t claimed the ticket for themselves.
Furthermore, assistants can use either the buttons,
or send !close or !open to mark a ticket as closed or
open.

User feedback
“It’s nice that assistants can easily run commands
to edit the ticket status – it makes it a lot easier for
assistants to make quick changes to a ticket.”

P a g e | 39

Source code available @ github.com/0xShay/SupportMe

STRUCTURE

The Python Flask server uses the sqlite3 library to interact with the database file stored

in the project folder.

The Flask web server also has multiple REST API endpoints which can be used to interact

with the system, allowing for tickets to be created, closed, profiles to be updated, and

information about tickets, users, and messages to be received (not exhaustive).

As a result, the additional endpoints which provide a default user interface can easily

interact with the RESTful endpoints in order to allow for the end-user to easily interact with

the system.

Furthermore, anyone can create a user interface and hook up user inputs and outputs to the

RESTful endpoints in order to customise or tailor the user experience depending on who

their audience is.

This will be beneficial to the studio as they can put their logo on the website or redevelop it

to match the theme of their existing website to maintain a level of brand consistency. These

pages will interact directly with the RESTful endpoints, in order to allow users to interact

with the Support Ticket system through a default standardized interface.

POTENTIAL IMPROVEMENTS

If I had more time and resources, here are some features that I would implement to further

improve the system:

RATE LIMITS

Currently there is no rate limiter implemented – adding a rate limit would help protect the

server from Distributed-Denial-of-Service (DDoS) attacks. One way I could implement this is

keeping account of requests from individual IP addresses, and if an IP address makes too

many requests in a set time period, any following requests made within that time period

would be ignored and the server would return a “429 Too Many Requests” HTTP error code.

Not only would I implement rate limits for the number of requests that can be made, but a

further rate limit could be implemented to prevent users from opening too many tickets. A

“maximum ticket limit” could be implemented, where users can only open up to a certain

number of tickets, and if they try to open any more before their existing ones are closed,

they will be returned an error.

P a g e | 40

Source code available @ github.com/0xShay/SupportMe

NOTIFICATIONS & AUTO-REFRESHING TICKETS

One criticism that was put forward by the client was that when a new message is sent in a

ticket, the ticket page must be refreshed to see any updates. Furthermore, from the

homepage, if a user has a lot of tickets, they may want to quickly see which tickets have had

any updates since they were last online.

Whilst the system was not intended to be a live-chat service, having a loop running in the

background on the client-side, getting all tickets, and refreshing ticket pages when new

messages are sent would provide end-users with the illusion of a “live chat” system, where

they get updates as soon as they’re sent.

In terms of a notification system, whenever a user fetches messages in a ticket, the

timestamp could be saved. A “last action” timestamp could also be stored in each ticket’s

metadata. When the user fetches a list of their open tickets the next time they log in, if a

message was sent in any of their tickets (last action timestamp > user’s last message fetch

timestamp), a small red dot could appear suggesting that there are unread messages in the

ticket.

ADMIN PANEL

Currently, to promote a customer account to an assistant account, the server admin must

run a command-line tool and input the ID of the assistant account. If the server admin is

inexperienced, they may struggle to promote user accounts – having a page dedicated for

admins would allow for accounts to be easily managed from a central point, with a more

user-friendly interface.

To implement this, I would need to create a new account type - ACCOUNT_TYPE_ADMIN (3)

– which would have exclusive access to a newly-created page (/admin-dashboard). On this

page they would be able to see a list of registered users and perform actions on behalf of

registered user accounts. This would allow for spam users’ accounts to be terminated and

inappropriate usernames or profile pictures to be monitored and controlled.

ACCOUNT SECURITY

A final improvement I would make is the addition of an email verification system, to prevent

multiple accounts being made by the same person. This would entail sending a verification

code to the inputted email when a user registers a new account, and having a timer for the

user to input the code into the website in order to successfully create their account.

P a g e | 41

Source code available @ github.com/0xShay/SupportMe

Email verification would also allow for users to recover lost accounts if they lost their

password – a /forgot-password page could be created where users input their email or

username, and they are sent an email with a password reset link.

Another way to improve account security is implementing two-factor authentication. When

users register, a 2FA key could be generated and stored in the User database, and when the

user registers for the first time, they can see this 2FA key. Using a 2FA authenticator app on

another device, the user can generate unique codes every 30 seconds, so even if their

password is compromised, they also need their 2FA code to log in and verify themselves.

P a g e | 42

Source code available @ github.com/0xShay/SupportMe

SOURCE CODE

MAIN SERVER LOGIC

Appendix A - server.py

import json, sqlite3, time, jwt, random, re

from flask import Flask, redirect, url_for, request, send_from_directory,

render_template

JWT_SECRET_KEY = "".join([random.choice(["0", "1", "2", "3", "4", "5", "6",

"7", "8", "9", "A", "B", "C", "D", "E", "F"]) for i in range(64)])

start of global constants ###

ACCOUNT_TYPE_CUSTOMER = 1

ACCOUNT_TYPE_ASSISTANT = 2

TICKET_STATUS_OPEN = 1

TICKET_STATUS_CLOSED = 2

SYSTEM_USER_ID = 0

end of global constants ###

App = Flask(

 __name__,

 static_url_path='',

 static_folder='static',

 template_folder='templates'

)

start of server-side methods ###

def create_user(username, email, password):

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT * FROM User WHERE username = ?", [username

])

 if len(cursor.fetchall()) != 0:

 return (False, "That username is already taken.")

 cursor.execute("SELECT * FROM User WHERE email = ?", [email])

 if len(cursor.fetchall()) != 0:

 return (False, "A user is already registered with that email

address.")

P a g e | 43

Source code available @ github.com/0xShay/SupportMe

 cursor.execute(

 "INSERT INTO User (username, password, createdAt, accountType,

profileIcon, email) VALUES (?, ?, ?, ?, ?, ?)",

 [username, password, int(time.time()), ACCOUNT_TYPE_CUSTOMER,

f"/profile-icons/{random.choice(['blue', 'green', 'purple', 'red'])}.png",

email]

)

 user_id = cursor.lastrowid

 return (True, user_id)

def login_user(username, password):

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT userID, password, accountType FROM User

WHERE username = ?", [username])

 user_list = cursor.fetchall()

 if len(user_list) == 0:

 return (False, "A user with the supplied username and password

was not found.")

 _user_id, _password, _account_type = user_list[0]

 if password == _password:

 access_token = generate_access_token(_user_id, _account_type)

 return (True, access_token)

 else:

 return (False, "A user with the supplied username and password

was not found.")

def get_profile(user_id):

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT username, createdAt, accountType,

profileIcon FROM User WHERE userID = ?", [user_id])

 user_list = cursor.fetchall()

 if len(user_list) == 0:

 return None

 _username, _created_at, _account_type, _profile_icon = user_list[0]

 return {

 "user_id": user_id,

 "username": _username,

 "created_at": _created_at,

 "account_type": _account_type,

 "profile_icon": _profile_icon

 }

def generate_access_token(user_id, account_type):

 access_token = jwt.encode({

P a g e | 44

Source code available @ github.com/0xShay/SupportMe

 "user_id": user_id,

 "account_type": account_type,

 "exp": int(time.time()) + 86400

 }, JWT_SECRET_KEY, algorithm="HS256")

 return access_token

def verify_access_token(access_token):

 try:

 d_at = jwt.decode(access_token.split(" ")[1], JWT_SECRET_KEY,

algorithms=["HS256"])

 if d_at["exp"] < time.time():

 return None

 else:

 return d_at

 except:

 return None

def is_valid_username(username):

 if not username.isalnum():

 return False, "Username can only contain alphanumeric characters."

 elif len(username) > 16:

 return False, "Username cannot be more than 16 characters."

 return True, True

def is_valid_password(password):

 if len(password) < 8:

 return False, "Password must be at least 8 characters."

 elif len(password) > 32:

 return False, "Password cannot be more than 32 characters."

 return True, True

def is_valid_email(email):

 if re.search('^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w{2,63}$', email):

 return True, True

 else:

 return False, "The provided email was invalid."

def is_valid_profile_icon(profile_icon):

 if profile_icon not in [f"/profile-icons/{c}.png" for c in ["blue",

"green", "purple", "red"]]:

 return False, "Profile icon is invalid."

 return True, True

def is_valid_ticket_title(ticket_title):

 if not all(x.isalnum() or x.isspace() for x in ticket_title):

 return False, "Ticket title can only contain spaces and

alphanumeric characters."

 elif len(ticket_title) < 8:

 return False, "Ticket title must be at least 8 characters - be

descriptive."

 elif len(ticket_title) > 64:

 return False, "Ticket title cannot be more than 64 characters -

keep it concise."

 return True, True

def is_valid_message(message):

P a g e | 45

Source code available @ github.com/0xShay/SupportMe

 if len(message) < 8 and not message.startswith("!"):

 return False, "Message length must be at least 8 characters - be

descriptive."

 elif len(message) > 512:

 return False, "Message length cannot be more than 512 characters."

 return True, True

end of server-side methods ###

start of flask endpoints ###

@App.route('/', methods=['GET'])

@App.route('/home', methods=['GET'])

def home_req():

 if request.method == 'GET':

 return (render_template('home.html'), 200)

@App.route('/register', methods=['GET', 'POST'])

def register_req():

 if request.method == 'GET':

 return (render_template('register.html'), 200)

 elif request.method == 'POST':

 try:

 registration_data = json.loads(request.get_data())

 if list(registration_data.keys()) != ["username", "email",

"password"]:

 return ({ "error": "The request failed." }, 400)

 if "" in list(registration_data.values()):

 return ({ "error": "Please don't leave any blank fields."

}, 400)

 _valid_username =

is_valid_username(registration_data["username"])

 if not _valid_username[0]:

 return ({ "error": _valid_username[1] }, 400)

 _valid_password =

is_valid_password(registration_data["password"])

 if not _valid_password[0]:

 return ({ "error": _valid_password[1] }, 400)

 _valid_email = is_valid_email(registration_data["email"])

 if not _valid_email[0]:

 return ({ "error": _valid_email[1] }, 400)

 cu_success, cu_res = create_user(registration_data["username"],

registration_data["email"], registration_data["password"])

 if cu_success:

P a g e | 46

Source code available @ github.com/0xShay/SupportMe

 return ({ "access_token": generate_access_token(cu_res,

ACCOUNT_TYPE_CUSTOMER) }, 200)

 else:

 return ({ "error": cu_res }, 400)

 except:

 return ({ "error": "Server failed to parse the request." },

400)

@App.route('/login', methods=['GET', 'POST'])

def login_req():

 if request.method == 'GET':

 return (render_template('login.html'), 200)

 elif request.method == 'POST':

 try:

 login_data = json.loads(request.get_data())

 if list(login_data.keys()) != ["username", "password"]:

 return ({ "error": "The request failed." }, 400)

 if "" in list(login_data.values()):

 return ({ "error": "Please don't leave any blank fields."

}, 400)

 lu_success, lu_res = login_user(login_data["username"],

login_data["password"])

 if lu_success:

 return ({ "access_token": lu_res }, 200)

 else:

 return ({ "error": lu_res }, 400)

 except:

 return ({ "error": "Server failed to parse the request." },

400)

@App.route('/get-profile/<int:user_id>', methods=['GET'])

def get_profile_by_user_id_req(user_id):

 if request.method == 'GET':

 auth_user =

verify_access_token(request.headers.get("Authorization"))

 if auth_user == None:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT username, createdAt, accountType,

profileIcon FROM User WHERE userID = ?", [user_id])

 user_list = cursor.fetchall()

P a g e | 47

Source code available @ github.com/0xShay/SupportMe

 if len(user_list) == 0:

 return ({ "error": "User not found." }, 400)

 _username, _created_at, _account_type, _profile_icon =

user_list[0]

 return ({ "user": {

 "user_id": user_id,

 "username": _username,

 "created_at": _created_at,

 "account_type": _account_type,

 "profile_icon": _profile_icon

 } }, 200)

@App.route('/ticket/new', methods=['GET', 'POST'])

def create_ticket_req():

 if request.method == 'GET':

 return (render_template('ticket/new.html'), 200)

 elif request.method == 'POST':

 try:

 auth_user =

verify_access_token(request.headers.get("Authorization"))

 if auth_user == None or auth_user["account_type"] !=

ACCOUNT_TYPE_CUSTOMER:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

 ticket_data = json.loads(request.get_data())

 if list(ticket_data.keys()) != ["ticket_title", "message"]:

 return ({ "error": "The request failed." }, 400)

 if "" in list(ticket_data.values()):

 return ({ "error": "Please don't leave any blank fields."

}, 400)

 _valid_ticket_title =

is_valid_ticket_title(ticket_data["ticket_title"])

 if not _valid_ticket_title[0]:

 return ({ "error": _valid_ticket_title[1] }, 400)

 _valid_message = is_valid_message(ticket_data["message"])

 if not _valid_message[0]:

 return ({ "error": _valid_message[1] }, 400)

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("INSERT INTO Ticket (customerID,

assistantID, openedAt, closedAt, title) VALUES (?, ?, ?, ?, ?);", [

auth_user["user_id"], -1, int(time.time()), -1, ticket_data["ticket_title"]

])

P a g e | 48

Source code available @ github.com/0xShay/SupportMe

 ticket_id = cursor.lastrowid

 cursor.execute("INSERT INTO Message (ticketID, authorID,

body, sentAt) VALUES (?, ?, ?, ?);", [ticket_id, auth_user["user_id"],

ticket_data["message"], int(time.time())])

 message_id = cursor.lastrowid

 return ({

 "ticket_id": ticket_id,

 "message_id": message_id

 }, 200)

 except:

 return ({ "error": "Server failed to parse the request." },

400)

@App.route('/get-ticket/<int:ticket_id>', methods=['GET'])

def ticket_json_by_id_req(ticket_id):

 if request.method == 'GET':

 auth_user =

verify_access_token(request.headers.get("Authorization"))

 if auth_user == None:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT customerID, assistantID, openedAt,

closedAt, title FROM Ticket WHERE ticketID = ?;", [ticket_id])

 ticket_list = cursor.fetchall()

 if len(ticket_list) == 0:

 return ({ "error": "Ticket with given ID was not found in

the database." }, 404)

 _customer_id, _assistant_id, _opened_at, _closed_at, _title =

ticket_list[0]

 if auth_user["user_id"] not in [_customer_id] and

auth_user["account_type"] != ACCOUNT_TYPE_ASSISTANT:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

 return ({

 "ticket_data": {

 "ticket_id": ticket_id,

 "customer_id": _customer_id,

 "assistant_id": _assistant_id,

 "opened_at": _opened_at,

 "closed_at": _closed_at,

 "title": _title

 }

 }, 200)

P a g e | 49

Source code available @ github.com/0xShay/SupportMe

@App.route('/ticket/<int:ticket_id>', methods=['GET', 'POST'])

def ticket_by_id_req(ticket_id):

 if request.method == 'GET':

 return (render_template('ticket/ticket.html', ticket_id=ticket_id),

200)

 elif request.method == 'POST':

 try:

 auth_user =

verify_access_token(request.headers.get("Authorization"))

 if auth_user == None:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

 message_data = json.loads(request.get_data())

 if list(message_data.keys()) != ["message"]:

 return ({ "error": "The request failed." }, 400)

 if "" in list(message_data.values()):

 return ({ "error": "Please don't leave any blank fields."

}, 400)

 _valid_message = is_valid_message(message_data["message"])

 if not _valid_message[0]:

 return ({ "error": _valid_message[1] }, 400)

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT customerID, assistantID, closedAt

FROM Ticket WHERE ticketID = ?;", [ticket_id])

 ticket_list = cursor.fetchall()

 if len(ticket_list) == 0:

 return ({ "error": "Ticket with given ID was not found

in the database." }, 404)

 _customer_id, _assistant_id, _closed_at = ticket_list[0]

 if auth_user["user_id"] not in [_customer_id] and

auth_user["account_type"] != ACCOUNT_TYPE_ASSISTANT:

 return ({ "error": "User is not authenticated to make

this request." }, 403)

 user_profile = get_profile(auth_user["user_id"])

 if message_data["message"] == "!close":

 cursor.execute("UPDATE Ticket SET closedAt = ? WHERE

(ticketID = ?);", [int(time.time()), ticket_id])

 cursor.execute("INSERT INTO Message (ticketID,

authorID, body, sentAt) VALUES (?, ?, ?, ?);", [ticket_id, SYSTEM_USER_ID,

P a g e | 50

Source code available @ github.com/0xShay/SupportMe

f"This ticket has been closed by {user_profile['username']} (ID:

{auth_user['user_id']}).", int(time.time())])

 elif message_data["message"] == "!open":

 cursor.execute("UPDATE Ticket SET closedAt = -1 WHERE

(ticketID = ?);", [ticket_id])

 cursor.execute("INSERT INTO Message (ticketID,

authorID, body, sentAt) VALUES (?, ?, ?, ?);", [ticket_id, SYSTEM_USER_ID,

f"This ticket has been reopened by {user_profile['username']} (ID:

{auth_user['user_id']}).", int(time.time())])

 elif message_data["message"] == "!claim" and

auth_user["account_type"] == ACCOUNT_TYPE_ASSISTANT:

 cursor.execute("UPDATE Ticket SET assistantID = ?,

closedAt = ? WHERE (ticketID = ?);", [auth_user["user_id"], -1, ticket_id

])

 if _closed_at != -1:

 cursor.execute("INSERT INTO Message (ticketID,

authorID, body, sentAt) VALUES (?, ?, ?, ?);", [ticket_id, SYSTEM_USER_ID,

f"This ticket has been claimed and reopened by {user_profile['username']}

(ID: {auth_user['user_id']}).", int(time.time())])

 else:

 cursor.execute("INSERT INTO Message (ticketID,

authorID, body, sentAt) VALUES (?, ?, ?, ?);", [ticket_id, SYSTEM_USER_ID,

f"This ticket has been claimed by {user_profile['username']} (ID:

{auth_user['user_id']}).", int(time.time())])

 else:

 if _closed_at != -1:

 cursor.execute("INSERT INTO Message (ticketID,

authorID, body, sentAt) VALUES (?, ?, ?, ?);", [ticket_id, SYSTEM_USER_ID,

f"This ticket has been reopened by {user_profile['username']} (ID:

{auth_user['user_id']}).", int(time.time())-1])

 cursor.execute("UPDATE Ticket SET closedAt = ?

WHERE (ticketID = ?);", [-1, ticket_id])

 cursor.execute("INSERT INTO Message (ticketID,

authorID, body, sentAt) VALUES (?, ?, ?, ?);", [ticket_id,

auth_user["user_id"], message_data["message"], int(time.time())+1])

 message_id = cursor.lastrowid

 return ({

 "ticket_id": ticket_id,

 "message_id": message_id

 }, 200)

 except:

 return ({ "error": "Server failed to parse the request." },

400)

@App.route('/get-open-tickets/<int:user_id>', methods=['GET'])

def get_open_tickets_by_user_id_req(user_id):

 if request.method == 'GET':

 auth_user =

verify_access_token(request.headers.get("Authorization"))

 if auth_user == None or auth_user["user_id"] != user_id:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

P a g e | 51

Source code available @ github.com/0xShay/SupportMe

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT * FROM User WHERE userID = ?;", [

user_id])

 if len(cursor.fetchall()) == 0:

 return ({ "error": "User with given ID was not found in the

database." }, 404)

 cursor.execute("SELECT ticketID, customerID, assistantID,

openedAt, closedAt, title FROM Ticket WHERE (customerID = ? OR assistantID

= ?) AND closedAt = -1 ORDER BY openedAt ASC;", [user_id, user_id])

 ticket_list = cursor.fetchall()

 response = []

 for t in ticket_list:

 _ticket_id, _customer_id, _assistant_id, _opened_at,

_closed_at, _title = t

 response.append({

 "ticket_id": _ticket_id,

 "customer_id": _customer_id,

 "assistant_id": _assistant_id,

 "opened_at": _opened_at,

 "closed_at": _closed_at,

 "title": _title

 })

 return ({

 "tickets": response

 }, 200)

@App.route('/get-closed-tickets/<int:user_id>', methods=['GET'])

def get_closed_tickets_by_user_id_req(user_id):

 if request.method == 'GET':

 auth_user =

verify_access_token(request.headers.get("Authorization"))

 if auth_user == None or auth_user["user_id"] != user_id:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT * FROM User WHERE userID = ?;", [

user_id])

 if len(cursor.fetchall()) == 0:

 return ({ "error": "User with given ID was not found in the

database." }, 404)

P a g e | 52

Source code available @ github.com/0xShay/SupportMe

 cursor.execute("SELECT ticketID, customerID, assistantID,

openedAt, closedAt, title FROM Ticket WHERE (customerID = ? OR assistantID

= ?) AND closedAt != -1 ORDER BY closedAt DESC;", [user_id, user_id])

 ticket_list = cursor.fetchall()

 response = []

 for t in ticket_list:

 _ticket_id, _customer_id, _assistant_id, _opened_at,

_closed_at, _title = t

 response.append({

 "ticket_id": _ticket_id,

 "customer_id": _customer_id,

 "assistant_id": _assistant_id,

 "opened_at": _opened_at,

 "closed_at": _closed_at,

 "title": _title

 })

 return ({

 "tickets": response

 }, 200)

@App.route('/get-unclaimed-tickets', methods=['GET'])

def get_unclaimed_tickets_req():

 if request.method == 'GET':

 auth_user =

verify_access_token(request.headers.get("Authorization"))

 if auth_user == None or auth_user["account_type"] !=

ACCOUNT_TYPE_ASSISTANT:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT ticketID, customerID, assistantID,

openedAt, closedAt, title FROM Ticket WHERE assistantID = -1 ORDER BY

openedAt ASC;")

 ticket_list = cursor.fetchall()

 response = []

 for t in ticket_list:

 _ticket_id, _customer_id, _assistant_id, _opened_at,

_closed_at, _title = t

 response.append({

 "ticket_id": _ticket_id,

 "customer_id": _customer_id,

 "assistant_id": _assistant_id,

 "opened_at": _opened_at,

 "closed_at": _closed_at,

 "title": _title

 })

P a g e | 53

Source code available @ github.com/0xShay/SupportMe

 return ({

 "tickets": response

 }, 200)

@App.route('/get-messages/<int:ticket_id>', methods=['GET'])

def get_messages_by_ticket_id_req(ticket_id):

 if request.method == 'GET':

 auth_user =

verify_access_token(request.headers.get("Authorization"))

 if auth_user == None:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT customerID, assistantID FROM Ticket

WHERE ticketID = ?;", [ticket_id])

 ticket_list = cursor.fetchall()

 if len(ticket_list) == 0:

 return ({ "error": "Ticket with given ID was not found in

the database." }, 404)

 _customer_id, _assistant_id = ticket_list[0]

 if auth_user["user_id"] not in [_customer_id] and

auth_user["account_type"] != ACCOUNT_TYPE_ASSISTANT:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

 cursor.execute("SELECT messageID, authorID, body, sentAt FROM

Message WHERE ticketID = ? ORDER BY sentAt DESC;", [ticket_id])

 message_list = cursor.fetchall()

 response = []

 for m in message_list:

 _message_id, _author_id, _body, _sent_at = m

 response.append({

 "message_id": _message_id,

 "author_id": _author_id,

 "body": _body,

 "sent_at": _sent_at

 })

 return ({

 "ticket_id": ticket_id,

 "message_list": response

 }, 200)

@App.route('/profile', methods=['GET', 'POST'])

def profile_req():

P a g e | 54

Source code available @ github.com/0xShay/SupportMe

 if request.method == 'GET':

 return (render_template('profile.html'), 200)

 elif request.method == 'POST':

 try:

 auth_user =

verify_access_token(request.headers.get("Authorization"))

 if auth_user == None:

 return ({ "error": "User is not authenticated to make this

request." }, 403)

 profile_data = json.loads(request.get_data())

 if list(profile_data.keys()) != ["new_password",

"old_password", "profile_icon"]:

 return ({ "error": "The request failed." }, 400)

 if profile_data["new_password"] == "":

 profile_data["new_password"] = profile_data["old_password"]

 if "" in list(profile_data.values()):

 return ({ "error": "Please don't leave any blank fields."

}, 400)

 with sqlite3.connect("data.db") as connection:

 cursor = connection.cursor()

 cursor.execute("SELECT password FROM User WHERE userID =

?;", [auth_user["user_id"]])

 user_list = cursor.fetchall()

 if len(user_list) == 0:

 return ({ "error": "User with given ID was not found in

the database." }, 404)

 if user_list[0][0] != profile_data["old_password"]:

 return ({ "error": "Incorrect password was provided."

}, 403)

 _valid_password =

is_valid_password(profile_data["new_password"])

 if not _valid_password[0]:

 return ({ "error": _valid_password[1] }, 400)

 _valid_profile_icon =

is_valid_profile_icon(profile_data["profile_icon"])

 if not _valid_profile_icon[0]:

 return ({ "error": _valid_profile_icon[1] }, 400)

 cursor.execute("UPDATE User SET password = ?, profileIcon =

? WHERE (userID = ?)", [profile_data["new_password"],

profile_data["profile_icon"], auth_user["user_id"]])

P a g e | 55

Source code available @ github.com/0xShay/SupportMe

 return ({ "msg": "Profile has been updated." }, 200)

 except:

 return ({ "error": "Server failed to parse the request." },

400)

end of flask endpoints ###

if __name__ == "__main__":

 App.run(host="0.0.0.0")

Appendix B - tools/changeAccountType.py

import sqlite3

user_id = int(input("Enter the user ID of the account: "))

account_type = int(input("Enter an account type to set (1 = customer, 2 =

assistant): "))

with sqlite3.connect("../data.db") as connection:

 try:

 cursor = connection.cursor()

 cursor.execute("UPDATE User SET accountType = ? WHERE userID = ?;",

[account_type, user_id])

 if cursor.rowcount == 0:

 print("User with given ID was not found in the database.

Terminating.")

 else:

 print(f"User with ID {user_id}'s account type has been

successfully updated to {account_type}.")

 except sqlite3.Error as error:

 print(error)

CLIENT SCRIPTS

Appendix C - static/src/constants.js

const ACCOUNT_TYPE_CUSTOMER = 1

const ACCOUNT_TYPE_ASSISTANT = 2

const TICKET_STATUS_OPEN = 1

const TICKET_STATUS_CLOSED = 2

const SYSTEM_USER_ID = 0

Appendix D - static/src/ticketTools.js

P a g e | 56

Source code available @ github.com/0xShay/SupportMe

async function openTicket() {

 let ticket_title_input = document.getElementById("ticket_title_input");

 let message_input = document.getElementById("message_input");

 const res = await (await fetch('/ticket/new', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + localStorage.getItem("access_token")

 },

 redirect: 'manual',

 body: JSON.stringify({

 ticket_title: ticket_title_input.value,

 message: message_input.value

 })

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 } else {

 window.location.href = "/ticket/" + res["ticket_id"];

 };

}

async function getTicket(ticket_id) {

 const res = await (await fetch('/get-ticket/' + ticket_id, {

 method: 'GET',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + localStorage.getItem("access_token")

 }

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 return false;

 } else {

 return res;

 };

}

async function getOpenTicketsByUserID(user_id) {

 const res = await (await fetch('/get-open-tickets/' + user_id, {

 method: 'GET',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + localStorage.getItem("access_token")

 }

 })).json();

P a g e | 57

Source code available @ github.com/0xShay/SupportMe

 if (res["error"] != undefined) {

 alert(res["error"]);

 return [];

 } else {

 return res["tickets"];

 };

}

async function getClosedTicketsByUserID(user_id) {

 const res = await (await fetch('/get-closed-tickets/' + user_id, {

 method: 'GET',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + localStorage.getItem("access_token")

 }

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 return [];

 } else {

 return res["tickets"];

 };

}

async function getUnclaimedTickets() {

 const res = await (await fetch('/get-unclaimed-tickets', {

 method: 'GET',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + localStorage.getItem("access_token")

 }

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 return [];

 } else {

 return res["tickets"];

 };

}

async function

sendMessage(message_input=document.getElementById("message_input").value) {

 const res = await (await fetch('/ticket/' + ticketID, {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' +

localStorage.getItem("access_token")

P a g e | 58

Source code available @ github.com/0xShay/SupportMe

 },

 body: JSON.stringify({

 message: message_input

 })

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 return [];

 } else {

 window.location.reload();

 return res;

 }

}

async function getMessages(ticket_id) {

 const res = await (await fetch('/get-messages/' + ticket_id, {

 method: 'GET',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + localStorage.getItem("access_token")

 }

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 return [];

 } else {

 return res["message_list"];

 };

}

Appendix E - static/src/usertools.js

const getDecodedAccessToken = () => {

 return localStorage.getItem("access_token") != null ?

jwt_decode(localStorage.getItem("access_token")) : null;

}

function getLoggedInUser() {

 let d_at = getDecodedAccessToken();

 if (d_at == null) return null;

 if (d_at["exp"] < (Date.now() / 1000)) {

 localStorage.removeItem("access_token");

 return null

 };

 return d_at;

}

async function register() {

P a g e | 59

Source code available @ github.com/0xShay/SupportMe

 let username_input = document.getElementById("username_input");

 let email_input = document.getElementById("email_input");

 let password_input = document.getElementById("password_input");

 let passwordc_input = document.getElementById("passwordc_input");

 if (password_input.value != passwordc_input.value) return

alert("Passwords do not match.")

 const res = await (await fetch('/register', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 redirect: 'manual',

 body: JSON.stringify({

 username: username_input.value,

 email: email_input.value,

 password: password_input.value

 })

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 } else {

 localStorage.setItem("access_token", res["access_token"]);

 window.location.href = "/home";

 };

}

async function login() {

 let username_input = document.getElementById("username_input");

 let password_input = document.getElementById("password_input");

 const res = await (await fetch('/login', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 redirect: 'manual',

 body: JSON.stringify({

 username: username_input.value,

 password: password_input.value

 })

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 } else {

 localStorage.setItem("access_token", res["access_token"]);

 window.location.href = "/home";

 };

}

P a g e | 60

Source code available @ github.com/0xShay/SupportMe

async function logout() {

 localStorage.removeItem("access_token");

 alert("Successfully logged out.");

 window.location.href = "/login";

}

async function getProfile(user_id) {

 const res = await (await fetch('/get-profile/' + user_id, {

 method: 'GET',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + localStorage.getItem("access_token")

 }

 })).json();

 if (res["error"] != undefined) {

 alert(res["error"]);

 return false;

 } else {

 return res["user"];

 };

}

async function updateProfile() {

 let new_password_input = document.getElementById("new_password_input");

 let new_passwordc_input =

document.getElementById("new_passwordc_input");

 let old_password_input = document.getElementById("old_password_input");

 let profile_icon_select =

document.getElementById("profile_icon_select");

 if (new_password_input.value != new_passwordc_input.value) return

alert("Passwords do not match.");

 if (old_password_input.value == "") return alert("Old password is

needed to confirm changes.");

 const res = await (await fetch('/profile', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + localStorage.getItem("access_token")

 },

 redirect: 'manual',

 body: JSON.stringify({

 new_password: new_password_input.value,

 old_password: old_password_input.value,

 profile_icon: profile_icon_select.value

 })

 })).json();

 if (res["error"] != undefined) {

P a g e | 61

Source code available @ github.com/0xShay/SupportMe

 alert(res["error"]);

 } else {

 alert("Profile updated.");

 window.location.reload();

 };

}

Appendix F - static/src/jwt-decode.js (sourced from GitHub)

// CODE IS FROM https://github.com/auth0/jwt-decode

(function (factory) {

 typeof define === 'function' && define.amd ? define(factory) :

 factory();

}((function () { 'use strict';

 /**

 * The code was extracted from:

 * https://github.com/davidchambers/Base64.js

 */

 var chars =

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";

 function InvalidCharacterError(message) {

 this.message = message;

 }

 InvalidCharacterError.prototype = new Error();

 InvalidCharacterError.prototype.name = "InvalidCharacterError";

 function polyfill(input) {

 var str = String(input).replace(/=+$/, "");

 if (str.length % 4 == 1) {

 throw new InvalidCharacterError(

 "'atob' failed: The string to be decoded is not correctly

encoded."

);

 }

 for (

 // initialize result and counters

 var bc = 0, bs, buffer, idx = 0, output = "";

 // get next character

 (buffer = str.charAt(idx++));

 // character found in table? initialize bit storage and add its

ascii value;

 ~buffer &&

 ((bs = bc % 4 ? bs * 64 + buffer : buffer),

 // and if not first of each 4 characters,

 // convert the first 8 bits to one ascii character

 bc++ % 4) ?

 (output += String.fromCharCode(255 & (bs >> ((-2 * bc) & 6))))

:

P a g e | 62

Source code available @ github.com/0xShay/SupportMe

 0

) {

 // try to find character in table (0-63, not found => -1)

 buffer = chars.indexOf(buffer);

 }

 return output;

 }

 var atob = (typeof window !== "undefined" &&

 window.atob &&

 window.atob.bind(window)) ||

 polyfill;

 function b64DecodeUnicode(str) {

 return decodeURIComponent(

 atob(str).replace(/(.)/g, function(m, p) {

 var code = p.charCodeAt(0).toString(16).toUpperCase();

 if (code.length < 2) {

 code = "0" + code;

 }

 return "%" + code;

 })

);

 }

 function base64_url_decode(str) {

 var output = str.replace(/-/g, "+").replace(/_/g, "/");

 switch (output.length % 4) {

 case 0:

 break;

 case 2:

 output += "==";

 break;

 case 3:

 output += "=";

 break;

 default:

 throw "Illegal base64url string!";

 }

 try {

 return b64DecodeUnicode(output);

 } catch (err) {

 return atob(output);

 }

 }

 function InvalidTokenError(message) {

 this.message = message;

 }

 InvalidTokenError.prototype = new Error();

 InvalidTokenError.prototype.name = "InvalidTokenError";

 function jwtDecode(token, options) {

 if (typeof token !== "string") {

P a g e | 63

Source code available @ github.com/0xShay/SupportMe

 throw new InvalidTokenError("Invalid token specified");

 }

 options = options || {};

 var pos = options.header === true ? 0 : 1;

 try {

 return JSON.parse(base64_url_decode(token.split(".")[pos]));

 } catch (e) {

 throw new InvalidTokenError("Invalid token specified: " +

e.message);

 }

 }

 /*

 * Expose the function on the window object

 */

 //use amd or just through the window object.

 if (window) {

 if (typeof window.define == "function" && window.define.amd) {

 window.define("jwt_decode", function() {

 return jwtDecode;

 });

 } else if (window) {

 window.jwt_decode = jwtDecode;

 }

 }

})));

//# sourceMappingURL=jwt-decode.js.map

STATIC CLIENT FILES

Appendix G - templates/base.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <title>SupportMe</title>

 <link rel="stylesheet" href="/style.css">

 <link rel="icon" href="/icon.png">

 </head>

 <body>

P a g e | 64

Source code available @ github.com/0xShay/SupportMe

 <p id="loggedInMessage">...</p>

 <h1>💬 SupportMe 💁</h1>

 <script src="/src/constants.js"></script>

 <script src="/src/jwt-decode.js"></script>

 <script src="/src/userTools.js"></script>

 <script src="/src/ticketTools.js"></script>

 <script>

 const currentUser = getLoggedInUser();

 if (currentUser != null) {

 getProfile(currentUser["user_id"]).then(profile => {

 document.getElementById("loggedInMessage").innerText =

"Logged in: " + profile["username"];

 });

 } else {

 document.getElementById("loggedInMessage").innerText = "You

are not logged in.";

 };

 </script>

 {% block content %} {% endblock %}

 </body>

</html>

Appendix H - templates/home.html

{% extends 'base.html' %}

{% block content %}

 <h2>Home</h2>

 <button id="open_ticket_button">Open a support

ticket</button>

 <button>Edit profile</button>

 <button onclick=logout()>Log out</button>

 <section>

 <h3>Open tickets</h3>

 <ul id="open_tickets_list">

 </section>

P a g e | 65

Source code available @ github.com/0xShay/SupportMe

 <section id="claimable_tickets">

 <h3>Claimable tickets</h3>

 <ul id="unclaimed_tickets_list">

 </section>

 <section>

 <h3>Closed tickets</h3>

 <ul id="closed_tickets_list">

 </section>

 <script>

 if (currentUser == null) window.location.href = "/login";

 const openTicketsList =

document.getElementById("open_tickets_list")

 const closedTicketsList =

document.getElementById("closed_tickets_list")

 const unclaimedTicketsList =

document.getElementById("unclaimed_tickets_list")

 getOpenTicketsByUserID(currentUser["user_id"]).then(openTickets =>

{

 if (openTickets.length == 0) openTicketsList.innerHTML = "<i>No

tickets to show.</i>"

 for (t of openTickets) {

 let _a = document.createElement("a");

 _a.innerText = "#" + t["ticket_id"] + " - " + t["title"];

 _a.href = "/ticket/" + t["ticket_id"];

 let _li = document.createElement("li");

 _li.appendChild(_a);

 openTicketsList.appendChild(_li);

 };

 });

 getClosedTicketsByUserID(currentUser["user_id"]).then(closedTickets

=> {

 if (closedTickets.length == 0) closedTicketsList.innerHTML =

"<i>No tickets to show.</i>"

 for (t of closedTickets) {

 let _a = document.createElement("a");

 _a.innerText = "#" + t["ticket_id"] + " - " + t["title"];

 _a.href = "/ticket/" + t["ticket_id"];

 let _li = document.createElement("li");

 _li.appendChild(_a);

 closedTicketsList.appendChild(_li);

 };

 });

 if (currentUser["account_type"] == ACCOUNT_TYPE_CUSTOMER) {

P a g e | 66

Source code available @ github.com/0xShay/SupportMe

 document.getElementById("claimable_tickets").style.display =

"none";

 } else if (currentUser["account_type"] == ACCOUNT_TYPE_ASSISTANT) {

 document.getElementById("claimable_tickets").style.display =

"block";

 document.getElementById("open_ticket_button").style.display =

"none";

 getUnclaimedTickets().then(unclaimedTickets => {

 if (unclaimedTickets.length == 0)

unclaimedTicketsList.innerHTML = "<i>No tickets to show.</i>"

 for (t of unclaimedTickets) {

 _a = document.createElement("a");

 _a.innerText = "#" + t["ticket_id"] + " - " +

t["title"];

 _a.href = "/ticket/" + t["ticket_id"];

 _li = document.createElement("li");

 _li.appendChild(_a);

 unclaimedTicketsList.appendChild(_li);

 };

 });

 }

 </script>

{% endblock %}

Appendix I - templates/login.html

{% extends 'base.html' %}

{% block content %}

 <h2>Login</h2>

 <label for="username">Username</label>

 <input type="text" id="username_input" name="username" />

 <label for="password">Password</label>

 <input type="password" id="password_input" name="password" />

 <button type="submit" onclick="login()">Login</button>

 Don't have an account? Click here to sign up!

P a g e | 67

Source code available @ github.com/0xShay/SupportMe

 <script>

 if (currentUser != null) window.location.href = "/home";

 </script>

{% endblock %}

Appendix J - templates/profile.html

{% extends 'base.html' %}

{% block content %}

 <h2>Profile</h2>

 <label for="user_id">Your user ID</label>

 <input type="text" id="user_id_input" name="user_id" disabled />

 <label for="username">Your username (cannot be changed)</label>

 <input type="text" id="username_input" name="username" disabled />

 <label for="new_password">New password</label>

 <input type="password" id="new_password_input" name="new_password" />

 <label for="new_passwordc">Confirm new password</label>

 <input type="password" id="new_passwordc_input" name="new_passwordc" />

 <label for="old_password">Old password</label>

 <input type="password" id="old_password_input" name="old_password" />

 <label for="profile_icon">Profile picture</label>

 <select name="profile_icon" id="profile_icon_select"

oninput="updateProfileIconPreview()">

 <option value="/profile-icons/blue.png">Blue</option>

 <option value="/profile-icons/green.png">Green</option>

 <option value="/profile-icons/purple.png">Purple</option>

 <option value="/profile-icons/red.png">Red</option>

 </select>

P a g e | 68

Source code available @ github.com/0xShay/SupportMe

 <button type="submit" onclick="updateProfile()">Save changes</button>

 Don't have an account? Click here to sign up!

 <script>

 if (currentUser == null) window.location.href = "/login";

 getProfile(currentUser["user_id"]).then(profile => {

 document.getElementById("profile_icon").src =

profile["profile_icon"];

 document.getElementById("profile_icon").width = 150;

 document.getElementById("user_id_input").value =

profile["user_id"];

 document.getElementById("username_input").value =

profile["username"];

 document.getElementById("profile_icon_select").value =

profile["profile_icon"];

 });

 function updateProfileIconPreview() {

 document.getElementById("profile_icon").src =

document.getElementById("profile_icon_select").value;

 };

 </script>

{% endblock %}

Appendix K - templates/register.html

{% extends 'base.html' %}

{% block content %}

 <h2>Register</h2>

 <label for="username">Username</label>

 <input type="text" id="username_input" name="username" />

 <label for="email">Email</label>

 <input type="email" id="email_input" name="email" />

 <label for="password">Password</label>

 <input type="password" id="password_input" name="password" />

 <label for="passwordc">Confirm Password</label>

 <input type="password" id="passwordc_input" name="passwordc" />

P a g e | 69

Source code available @ github.com/0xShay/SupportMe

 <button type="submit" onclick="register()">Register</button>

 Already have an account? Click here to log in!

 <script>

 if (currentUser != null) window.location.href = "/home";

 </script>

{% endblock %}

Appendix L - templates/ticket/new.html

{% extends 'base.html' %}

{% block content %}

 <h2>Open a new support ticket</h2>

 <label for="ticket_title">Ticket Title</label>

 <input type="text" id="ticket_title_input" name="ticket_title" />

 <label for="message">Ticket Description</label>

 <textarea type="text" id="message_input" name="message"

rows="10"></textarea>

 <button type="submit" onclick="openTicket()">Open ticket</button>

 <script>

 if (currentUser == null) window.location.href = "/login";

 </script>

{% endblock %}

Appendix M - templates/ticket/ticket.html

{% extends 'base.html' %}

{% block content %}

 <h2 id="ticket_title">...</h2>

 <p id="ticket_id">Ticket #{{ ticket_id }}</p>

P a g e | 70

Source code available @ github.com/0xShay/SupportMe

 <p>

 </p>

 <p>

 ...

 This ticket has not been claimed

 </p>

 <label for="message">Send a message:</label>

 <textarea type="text" id="message_input" name="message"

rows="10"></textarea>

 <button id="close_ticket_btn" type="submit"

onclick="sendMessage('!close')">Close ticket</button>

 <button id="open_ticket_btn" type="submit"

onclick="sendMessage('!open')">Reopen ticket</button>

 <button id="send_message_btn" type="submit"

onclick="sendMessage()">Send</button>

 <button id="claim_ticket_btn" type="submit"

onclick="sendMessage('!claim')">Claim ticket</button>

 <table id="ticket_messages"></table>

 <script>

 if (currentUser == null) window.location.href = "/login";

 const profiles = {};

 const ticketID = parseInt("{{ ticket_id }}");

 getTicket(ticketID).then(ticket => {

 if (ticket != false) {

 ticket = ticket["ticket_data"];

 document.getElementById("ticket_title").innerText = "[" +

(ticket["closed_at"] == -1 ? "OPEN" : "CLOSED") + "] " + ticket["title"];

 document.getElementById("opened_at").innerText = "Opened: "

+ new Date(ticket["opened_at"] * 1000).toLocaleString();

 if (ticket["closed_at"] != -1) {

 document.getElementById("closed_at").innerText =

"Closed: " + new Date(ticket["closed_at"] * 1000).toLocaleString();

document.getElementById("open_ticket_btn").style.display = "inline";

 } else {

document.getElementById("close_ticket_btn").style.display = "inline";

 };

 getProfile(ticket["customer_id"]).then(customer => {

P a g e | 71

Source code available @ github.com/0xShay/SupportMe

 document.getElementById("opened_by").innerHTML =

"Opened by " + customer["username"] + " (ID: " +

ticket["customer_id"] + ")";

 });

 if (currentUser["account_type"] == ACCOUNT_TYPE_ASSISTANT

&& ticket["assistant_id"] != currentUser["user_id"]) {

document.getElementById("claim_ticket_btn").style.display = "inline";

 };

 if (ticket["assistant_id"] != -1) {

 getProfile(ticket["assistant_id"]).then(assistant => {

 document.getElementById("claimed_by").innerHTML =

"Claimed by " + assistant["username"] + " (ID: " +

ticket["assistant_id"] + ")";

 });

 };

 };

 });

 const ticketMessagesTable =

document.getElementById("ticket_messages");

 getMessages(ticketID).then(async messages => {

 for (a_id of messages.map(m => m["author_id"])) {

profiles[a_id] = await getProfile(a_id); }

 for (msg of messages) {

 let _tr = document.createElement("tr");

 let _td1 = document.createElement("td");

 let _img = document.createElement("img");

 _img.src = profiles[msg["author_id"]]["profile_icon"];

 _img.width = 150;

 let _td2 = document.createElement("td");

 let _h3_sender = document.createElement("h3");

 _h3_sender.classList.add("message_sender");

 _h3_sender.innerText =

profiles[msg["author_id"]]["username"];

 let _p_body = document.createElement("p");

 _p_body.classList.add("message_body");

 _p_body.innerText = msg["body"];

 let _br1 = document.createElement("br");

 let _p_sent_at = document.createElement("p");

 _p_sent_at.classList.add("message_sent_at");

 _p_sent_at.innerText = new Date(msg["sent_at"] *

1000).toLocaleString();

 let _br2 = document.createElement("br");

 _td1.appendChild(_img);

 _td2.appendChild(_h3_sender);

 _td2.appendChild(_p_body);

 _td2.appendChild(_br1);

 _td2.appendChild(_p_sent_at);

 _td2.appendChild(_br2);

 _tr.appendChild(_td1);

 _tr.appendChild(_td2);

 ticketMessagesTable.appendChild(_tr);

P a g e | 72

Source code available @ github.com/0xShay/SupportMe

 };

 });

 </script>

{% endblock %}

Appendix N - static/style.css

body {

 background-color: rgb(203, 255, 238);

 font-family: 'Barlow', 'Gill Sans Nova', 'Calibri';

 padding: 20px;

 text-align: center;

}

p {

 margin: 20px 0 0 0;

}

h1 {

 text-align: center;

 font-size: min(8vw, 45px);

 margin: 20px 0 0 0;

}

h2 {

 font-size: 30px;

 margin: 20px 0 0 0;

}

h3 {

 font-size: 25px;

 margin: 20px 0 0 0;

}

p, label, input, button, a, li {

 font-size: 20px;

}

p#loggedInMessage {

 position: absolute;

 right: 20px;

 top: 10px;

}

p#ticket_id {

 margin: 0 0 0 0;

}

ul {

 text-align: left;

}

P a g e | 73

Source code available @ github.com/0xShay/SupportMe

input {

 width: min(225px, 80%);

}

textarea {

 width: min(225px, 80%);

}

button {

 padding: 10px 30px;

 margin: 5px 0 0 0;

}

button#close_ticket_btn, button#open_ticket_btn, button#claim_ticket_btn {

 display: none;

}

section#claimable_tickets {

 display: none;

}

table#ticket_messages tr img {

 padding-bottom: 20px;

}

table#ticket_messages tr td {

 text-align: left;

 padding: 0 0 0 20px;

 vertical-align: top;

}

table#ticket_messages tr td * {

 margin: 0;

}

table#ticket_messages p.message_sent_at {

 font-size: 15px

}

@media only screen and (max-width: 600px) {

 input {

 width: min(200px, 80%);

 }

}

P a g e | 74

Source code available @ github.com/0xShay/SupportMe

REFERENCES

i Zendesk. Zendesk Pricing. https://www.zendesk.co.uk/pricing/#everyone (accessed 17/03/2023)
ii Internet Engineering Task Force (IETF). JSON Web Token (JWT). https://www.rfc-editor.org/rfc/rfc7519
(published May 2015, accessed 05/02/2023)
iii Virtue Security. Application Penetration Testing – Username Enumeration.
https://www.virtuesecurity.com/kb/username-enumeration/ (accessed 05/02/2023)
iv Vaarun Sinha. Why you should never use random module for generating passwords.
https://dev.to/vaarun_sinha/why-you-should-never-use-random-module-for-generating-passwords-38nl (last
updated 07/11/2021, accessed 05/02/2023)

https://www.zendesk.co.uk/pricing/#everyone
https://www.rfc-editor.org/rfc/rfc7519
https://www.virtuesecurity.com/kb/username-enumeration/
https://dev.to/vaarun_sinha/why-you-should-never-use-random-module-for-generating-passwords-38nl

